

Universidad de Burgos Departamento de Física

(A)dS Drinfel'd doubles and quantum gravity with cosmological constant

Angel Ballesteros

F.J. Herranz, C. Meusburger, F. Musso, P. Naranjo

XXXV MAX BORN SYMPOSIUM WROCLAW, 2015

The basic assumption:

Quantization of gravity should imply the introduction of a 'quantum' space-time in which time and/or space would exhibit a 'quantum' structure that would be governed by a parameter related to the Planck scale.

The basic assumption:

Quantization of gravity should imply the introduction of a 'quantum' space-time in which time and/or space would exhibit a 'quantum' structure that would be governed by a parameter related to the Planck scale.

The basic assumption:

Quantization of gravity should imply the introduction of a 'quantum' space-time in which time and/or space would exhibit a 'quantum' structure that would be governed by a parameter related to the Planck scale.

Why quantum kinematical groups for quantum space-time?

Provide deformations of the symmetry algebras of space-times (DSR) theories) in which the quantum deformation parameter could be identified/related with the **Planck length/energy**.

The basic assumption:

Quantization of gravity should imply the introduction of a 'quantum' space-time in which time and/or space would exhibit a 'quantum' structure that would be governed by a parameter related to the Planck scale.

- Provide deformations of the symmetry algebras of space-times (DSR theories) in which the quantum deformation parameter could be identified/related with the Planck length/energy.
- *q*-deformed Casimir operator generate **deformed dispersion relations**.

The basic assumption:

Quantization of gravity should imply the introduction of a 'quantum' space-time in which time and/or space would exhibit a 'quantum' structure that would be governed by a parameter related to the Planck scale.

- Provide deformations of the symmetry algebras of space-times (DSR) theories) in which the quantum deformation parameter could be identified/related with the **Planck length/energy**.
- q-deformed Casimir operator generate **deformed dispersion relations**.
- The Hopf algebra structure of the quantum symmetries generates space-times whose noncommutativity is governed by the deformation parameter and could account for Planck scale uncertainty relations between space and time coordinates.

The basic assumption:

Quantization of gravity should imply the introduction of a 'quantum' space-time in which time and/or space would exhibit a 'quantum' structure that would be governed by a parameter related to the Planck scale.

- Provide deformations of the symmetry algebras of space-times (DSR theories) in which the quantum deformation parameter could be identified/related with the Planck length/energy.
- *q*-deformed Casimir operator generate **deformed dispersion relations**.
- The Hopf algebra structure of the quantum symmetries generates space-times whose noncommutativity is governed by the deformation parameter and could account for Planck scale uncertainty relations between space and time coordinates.
- **Curved momentum spaces** arise in a natural way in these quantum Hopf algebras as a consequence of the **non-cocommutativity** of momenta (non-abelian addition law for momenta).

Quantum group symmetries in (3+1) gravity are introduced heuristically and the full coalgebra structure is not often invoked.

However, for (2+1)-gravity it was stated in ¹ that the perturbations of the vacuum state of a Chern-Simons quantum gravity theory with cosmological constant Λ , are invariant under transformations that close a quantum (Anti) de Sitter algebra.

¹G. Amelino-Camelia, L. Smolin, A. Starodubtsev, Class.Quant.Grav. (2004) 3095.

² J. Lukierski, A. Nowicki, H. Ruegg, V.N. Tolstoy, Phys. Lett. B264 (1991) 331.

Quantum group symmetries in (3+1) gravity are introduced heuristically and the full coalgebra structure is not often invoked.

However, for (2+1)-gravity it was stated in ¹ that the perturbations of the vacuum state of a Chern-Simons quantum gravity theory with cosmological constant Λ , are invariant under transformations that close a quantum (Anti) de Sitter algebra.

- The low energy regime/zero-curvature limit was found to be the known κ-Poincaré quantum algebra.²
- The κ -Poincaré quantum Casimirs are (here $z = 1/\kappa$):

 $\begin{aligned} \mathcal{C}_z &= 4 \frac{\sinh^2(\frac{z}{2}P_0)}{z^2} - \mathbf{P}^2 \quad \longrightarrow \text{deformed dispersion relation} \\ \mathcal{W}_z &= -\frac{\sinh(zP_0)}{z} + (\mathcal{K}_1P_2 - \mathcal{K}_2P_1). \end{aligned}$

¹G. Amelino-Camelia, L. Smolin, A. Starodubtsev, Class.Quant.Grav. (2004) 3095.

²J. Lukierski, A. Nowicki, H. Ruegg, V.N. Tolstoy, Phys. Lett. B264 (1991) 331.

This is consistent with the fact that, in (2+1)-gravity, the classical limit of quantum groups (Poisson–Lie groups) arise in a natural way:

³E. Witten, Nucl. Phys. B311 (1988) 46

⁴V.V. Fock, A.A. Rosly, ITEP-72-92 (1992); Am. Math. Soc. Transl. 191 (1999) 67

⁵C. Meusburger, B.J. Schroers, Nucl. Phys. B806 (2009) 462

This is consistent with the fact that, in (2+1)-gravity, the classical limit of quantum groups (Poisson–Lie groups) arise in a natural way:

Poisson-Lie (PL) structures on the isometry groups of (2+1) spaces with constant curvature play a relevant role as phase spaces when (2+1) gravity coupled to point particles is considered as a Chern-Simons gauge theory.^{3 4 5}

³E. Witten, Nucl. Phys. B311 (1988) 46

⁴V.V. Fock, A.A. Rosly, ITEP-72-92 (1992); Am. Math. Soc. Transl. 191 (1999) 67

⁵C. Meusburger, B.J. Schroers, Nucl. Phys. B806 (2009) 462

This is consistent with the fact that, in (2+1)-gravity, the classical limit of quantum groups (Poisson–Lie groups) arise in a natural way:

- Poisson-Lie (PL) structures on the isometry groups of (2+1) spaces with constant curvature play a relevant role as phase spaces when (2+1) gravity coupled to point particles is considered as a Chern-Simons gauge theory.^{3 4 5}
- The admissible classical *r*-matrices defining such Poisson-Lie groups are such that their symmetric component coincides with a tensorized Casimir element (Fock–Rosly condition).

³E. Witten, Nucl. Phys. B311 (1988) 46

⁴V.V. Fock, A.A. Rosly, ITEP-72-92 (1992); Am. Math. Soc. Transl. 191 (1999) 67

⁵C. Meusburger, B.J. Schroers, Nucl. Phys. B806 (2009) 462

This is consistent with the fact that, in (2+1)-gravity, the classical limit of quantum groups (Poisson–Lie groups) arise in a natural way:

- Poisson-Lie (PL) structures on the isometry groups of (2+1) spaces with constant curvature play a relevant role as phase spaces when (2+1) gravity coupled to point particles is considered as a Chern-Simons gauge theory.^{3 4 5}
- The admissible classical *r*-matrices defining such Poisson-Lie groups are such that their symmetric component coincides with a tensorized Casimir element (Fock–Rosly condition).
- The corresponding quantum (Anti) de Sitter and Poincaré groups should be meaningful ones in a quantum gravity context.

³E. Witten, Nucl. Phys. B311 (1988) 46

⁴V.V. Fock, A.A. Rosly, ITEP-72-92 (1992); Am. Math. Soc. Transl. 191 (1999) 67

⁵C. Meusburger, B.J. Schroers, Nucl. Phys. B806 (2009) 462

For a given Lie algebra/group, there are many possible quantum deformations (for (2+1) (A)dS see ⁶).

⁶A.B., F.J. Herranz, F. Musso, J. Phys. Conf. Series 532 (2014) 012002

⁷A.B., F.J. Herranz, C. Meusburger, Class. Quantum Grav. 30 (2013) 155012

⁸A.B., F.J. Herranz, C. Meusburger, Phys. Lett. B 732 (2014) 201

⁹A.B., F.J. Herranz, P. Naranjo, SIGMA 10 (2014) 052

For a given Lie algebra/group, there are many possible quantum deformations (for (2+1) (A)dS see ⁶).

It can be proven that:

All the classical *r*-matrices coming from a Drinfel'd double structure of the isometry group -(A)dS and Poincaré- fulfill the Fock-Rosly condition and are compatible with the CS formalism. Thus:

⁶A.B., F.J. Herranz, F. Musso, J. Phys. Conf. Series 532 (2014) 012002

⁷A.B., F.J. Herranz, C. Meusburger, Class. Quantum Grav. 30 (2013) 155012

⁸A.B., F.J. Herranz, C. Meusburger, Phys. Lett. B 732 (2014) 201

⁹A.B., F.J. Herranz, P. Naranjo, SIGMA 10 (2014) 052

For a given Lie algebra/group, there are many possible quantum deformations (for (2+1) (A)dS see ⁶).

It can be proven that:

All the classical *r*-matrices coming from a Drinfel'd double structure of the isometry group -(A)dS and Poincaré- fulfill the Fock-Rosly condition and are compatible with the CS formalism. Thus:

• All the possible DD structures for the de Sitter Lie algebra *so*(3,1) and the Anti de Sitter one *so*(2,2) can be explicitly found.⁷

⁶A.B., F.J. Herranz, F. Musso, J. Phys. Conf. Series 532 (2014) 012002

⁷A.B., F.J. Herranz, C. Meusburger, Class. Quantum Grav. 30 (2013) 155012

⁸A.B., F.J. Herranz, C. Meusburger, Phys. Lett. B 732 (2014) 201

⁹A.B., F.J. Herranz, P. Naranjo, SIGMA 10 (2014) 052

For a given Lie algebra/group, there are many possible quantum deformations (for (2+1) (A)dS see ⁶).

It can be proven that:

All the classical *r*-matrices coming from a Drinfel'd double structure of the isometry group -(A)dS and Poincaré- fulfill the Fock-Rosly condition and are compatible with the CS formalism. Thus:

- All the possible DD structures for the de Sitter Lie algebra so(3, 1) and the Anti de Sitter one so(2, 2) can be explicitly found. ⁷
- Two main candidates for quantum deformations of the (A)dS symmetries that would be appropriate in a (2+1) setting are obtained. ^{8 9}

⁶A.B., F.J. Herranz, F. Musso, J. Phys. Conf. Series 532 (2014) 012002

⁷A.B., F.J. Herranz, C. Meusburger, Class. Quantum Grav. 30 (2013) 155012

⁸A.B., F.J. Herranz, C. Meusburger, Phys. Lett. B 732 (2014) 201

⁹A.B., F.J. Herranz, P. Naranjo, SIGMA 10 (2014) 052

Plan of the talk

- (A)dS algebras as DDs
- 3 (2+1) twisted κ -AdS $_{\omega}$ algebra
- 4 Snyder deformation
- **5** Quantum AdS_{ω} in (3+1)

2. (A)dS algebras as Drinfel'd Doubles

A 2*d*-dimensional Lie algebra \mathfrak{a} has the structure of a (classical) Drinfel'd double if there exists a basis $\{X_1, \ldots, X_d, x^1, \ldots, x^d\}$ of \mathfrak{a} in which the Lie bracket takes the form

 $[X_i, X_j] = c_{ij}^k X_k$ $[x^i, x^j] = f_k^{ij} x^k$ $[x^i, X_j] = c_{jk}^i x^k - f_j^{ik} X_k.$

A 2*d*-dimensional Lie algebra \mathfrak{a} has the structure of a (classical) Drinfel'd double if there exists a basis $\{X_1, \ldots, X_d, x^1, \ldots, x^d\}$ of \mathfrak{a} in which the Lie bracket takes the form

 $[X_i, X_j] = c_{ij}^k X_k$ $[x^i, x^j] = f_k^{ij} x^k$ $[x^i, X_j] = c_{jk}^i x^k - f_j^{ik} X_k.$

• This implies that the two sets of generators $\{X_1, \ldots, X_d\}$ and $\{x^1, \ldots, x^d\}$ form two Lie subalgebras with structure constants c_{ij}^k and f_k^{ij} , respectively.

A 2*d*-dimensional Lie algebra \mathfrak{a} has the structure of a (classical) Drinfel'd double if there exists a basis $\{X_1, \ldots, X_d, x^1, \ldots, x^d\}$ of \mathfrak{a} in which the Lie bracket takes the form

 $[X_i, X_j] = c_{ij}^k X_k$ $[x^i, x^j] = f_k^{ij} x^k$ $[x^i, X_j] = c_{jk}^i x^k - f_j^{ik} X_k.$

- This implies that the two sets of generators $\{X_1, \ldots, X_d\}$ and $\{x^1, \ldots, x^d\}$ form two Lie subalgebras with structure constants c_{ij}^k and f_k^{ij} , respectively.
- Moreover, the expression for the crossed brackets [xⁱ, X_j] implies that an Ad-invariant symmetric bilinear form on a is given by

$$\langle X_i, X_j \rangle = 0$$
 $\langle x^i, x^j \rangle = 0$ $\langle x^i, X_j \rangle = \delta_j^i$ $\forall i, j.$

A 2*d*-dimensional Lie algebra \mathfrak{a} has the structure of a (classical) Drinfel'd double if there exists a basis $\{X_1, \ldots, X_d, x^1, \ldots, x^d\}$ of \mathfrak{a} in which the Lie bracket takes the form

 $[X_i, X_j] = c_{ij}^k X_k$ $[x^i, x^j] = f_k^{ij} x^k$ $[x^i, X_j] = c_{jk}^i x^k - f_j^{ik} X_k.$

- This implies that the two sets of generators $\{X_1, \ldots, X_d\}$ and $\{x^1, \ldots, x^d\}$ form two Lie subalgebras with structure constants c_{ij}^k and f_k^{ij} , respectively.
- Moreover, the expression for the crossed brackets [xⁱ, X_j] implies that an Ad-invariant symmetric bilinear form on a is given by

$$\langle X_i, X_j \rangle = 0$$
 $\langle x^i, x^j \rangle = 0$ $\langle x^i, X_j \rangle = \delta_j^i$ $\forall i, j.$

• And a quadratic Casimir operator for α is always given by

$$C = \frac{1}{2} \sum_{i} \left(x^i X_i + X_i x^i \right).$$

Introduction (A)dS algebras as DDs (2+1) twisted κ -AdS $_{\omega}$ algebra Snyder deformation Quantum A

The DD – Fock/Rosly correspondence

Moreover, if a is a DD Lie algebra, its corresponding Lie group can be always endowed with a PL structure generated by the canonical classical *r*-matrix

$$r = \sum_{i} x^{i} \otimes X_{i}$$

which is a (constant) solution of the Classical Yang-Baxter equation [[r, r]] = 0.

• The skew-symmetric component of the r-matrix is

$$r' = \frac{1}{2} \sum_{i} x^{i} \wedge X_{i}.$$

Introduction (A)dS algebras as DDs (2+1) twisted κ -AdS_{ω} algebra Snyder deformation Quantum A

The DD – Fock/Rosly correspondence

Moreover, if a is a DD Lie algebra, its corresponding Lie group can be always endowed with a PL structure generated by the canonical classical *r*-matrix

$$r = \sum_{i} x^{i} \otimes X_{i}$$

which is a (constant) solution of the Classical Yang-Baxter equation [[r, r]] = 0.

• The skew-symmetric component of the r-matrix is

$$r' = \frac{1}{2} \sum_{i} x^i \wedge X_i.$$

• And the symmetric component Ω coincides with the tensorized form of the canonical quadratic Casimir element in a

$$\Omega = r - r' = \frac{1}{2} \sum_{i} (x^{i} \otimes X_{i} + X_{i} \otimes x^{i}),$$

which is just the Fock-Rosly condition.

Introduction (A)dS algebras as DDs (2+1) twisted κ -AdS_{ω} algebra Snyder deformation Quantum A

The DD – Fock/Rosly correspondence

Moreover, if a is a DD Lie algebra, its corresponding Lie group can be always endowed with a PL structure generated by the canonical classical *r*-matrix

$$r = \sum_{i} x^{i} \otimes X_{i}$$

which is a (constant) solution of the Classical Yang-Baxter equation [[r, r]] = 0.

• The skew-symmetric component of the r-matrix is

$$r' = \frac{1}{2} \sum_{i} x^i \wedge X_i.$$

• And the symmetric component Ω coincides with the tensorized form of the canonical quadratic Casimir element in a

$$\Omega = r - r' = \frac{1}{2} \sum_{i} (x^{i} \otimes X_{i} + X_{i} \otimes x^{i}),$$

which is just the Fock-Rosly condition.

Therefore, in Lorentzian (2+1) gravity with nonvanishing Λ , any DD structure on so(3,1) and so(2,2) will provide an admissible *r*-matrix.

• The Lie algebras of the (A)dS and Poincaré groups can be written in a common kinematical basis in terms of generators J_a , P_a , a = 0, 1, 2.

¹⁰E. Witten, Nucl. Phys. B 311 (1988) 46

¹¹A. Achucarro, P.K. Townsend, Phys. Lett. B 180 (1986) 89

Introduction (A)dS algebras as DDs (2+1) twisted κ -AdS $_{\omega}$ algebra Snyder deformation Quantum AdS $_{\omega}$ in (3+1)

Lie algebras of (2+1) Lorentzian gravity

- The Lie algebras of the (A)dS and Poincaré groups can be written in a common kinematical basis in terms of generators J_a , P_a , a = 0, 1, 2.
- In this basis the cosmological constant Λ and the signature of the metric arise as **parameters** in the Lie bracket: ¹⁰ ¹¹

 $\begin{bmatrix} J_a, J_b \end{bmatrix} = \epsilon_{abc} J^c \qquad \begin{bmatrix} J_a, P_b \end{bmatrix} = \epsilon_{abc} P^c \qquad \begin{bmatrix} P_a, P_b \end{bmatrix} = \chi \epsilon_{abc} J^c$ where $\chi = \begin{cases} \Lambda & \text{for Euclidean signature;} \\ -\Lambda & \text{for Lorentzian signature.} \end{cases}$

¹⁰E. Witten, Nucl. Phys. B 311 (1988) 46

¹¹A. Achucarro, P.K. Townsend, Phys. Lett. B 180 (1986) 89

Introduction (A)dS algebras as DDs (2+1) twisted κ -AdS $_{\omega}$ algebra Snyder deformation Quantum Ad

Lie algebras of (2+1) Lorentzian gravity

- The Lie algebras of the (A)dS and Poincaré groups can be written in a common kinematical basis in terms of generators J_a , P_a , a = 0, 1, 2.
- In this basis the cosmological constant Λ and the signature of the metric arise as parameters in the Lie bracket: ¹⁰ ¹¹

 $\begin{bmatrix} J_a, J_b \end{bmatrix} = \epsilon_{abc} J^c \qquad \begin{bmatrix} J_a, P_b \end{bmatrix} = \epsilon_{abc} P^c \qquad \begin{bmatrix} P_a, P_b \end{bmatrix} = \chi \epsilon_{abc} J^c$ where $\chi = \begin{cases} \Lambda & \text{for Euclidean signature;} \\ -\Lambda & \text{for Lorentzian signature.} \end{cases}$

If g = diag(α, 1, 1) with α = ±1 denotes the Euclidean / Minkowski metric and Λ = αχ, we have

$[J_0,J_1]=J_2,$	$[J_0,J_2]=-J_1,$	$[J_1, J_2] = \alpha J_0,$
$[J_0,P_0]=0,$	$[J_0,P_1]=P_2,$	$[J_0,P_2]=-P_1,$
$[J_1,P_0]=-P_2,$	$[J_1,P_1]=0,$	$[J_1, P_2] = \alpha P_0,$
$[J_2, P_0] = P_1,$	$[J_2, P_1] = -\alpha P_0,$	$[J_2,P_2]=0,$
$[P_0, P_1] = \chi J_2,$	$[P_0,P_2]=-\chiJ_1,$	$[P_1, P_2] = \alpha \chi J_0,$

¹⁰E. Witten, Nucl. Phys. B 311 (1988) 46

¹¹A. Achucarro, P.K. Townsend, Phys. Lett. B 180 (1986) 89

The basis $\{J_a, P_a\}_{a=0,1,2}$ have a direct geometrical interpretation

- J_a are the infinitesimal generators of **boosts** / **rotations**.
- P_a generate translations, which commute if $\Lambda = 0 = \chi$.

The basis $\{J_a, P_a\}_{a=0,1,2}$ have a direct geometrical interpretation

- J_a are the infinitesimal generators of **boosts** / **rotations**.
- P_a generate translations, which commute if $\Lambda = 0 = \chi$.

For all values of the parameters α, χ we have two quadratic Casimir elements

$$\begin{split} \mathcal{C}_1 &= \alpha \, \mathcal{P}_0^2 + \mathcal{P}_1^2 + \mathcal{P}_2^2 + \chi \, (\alpha \, J_0^2 + J_1^2 + J_2^2), \\ \mathcal{C}_2 &= \frac{1}{2} \left(\alpha \, (J_0 \, \mathcal{P}_0 + \mathcal{P}_0 \, J_0) + J_1 \, \mathcal{P}_1 + \mathcal{P}_1 \, J_1 + J_2 \, \mathcal{P}_2 + \mathcal{P}_2 \, J_2 \right). \end{split}$$

and the space of Ad-invariant symmetric bilinear forms is two-dimensional.

The basis $\{J_a, P_a\}_{a=0,1,2}$ have a direct geometrical interpretation

- J_a are the infinitesimal generators of **boosts** / **rotations**.
- P_a generate translations, which commute if $\Lambda = 0 = \chi$.

For all values of the parameters α, χ we have two quadratic Casimir elements

$$\begin{split} \mathcal{C}_1 &= \alpha \, \mathcal{P}_0^2 + \mathcal{P}_1^2 + \mathcal{P}_2^2 + \chi \, (\alpha \, J_0^2 + J_1^2 + J_2^2), \\ \mathcal{C}_2 &= \frac{1}{2} \left(\alpha \, (J_0 \, \mathcal{P}_0 + \mathcal{P}_0 \, J_0) + J_1 \, \mathcal{P}_1 + \mathcal{P}_1 \, J_1 + J_2 \, \mathcal{P}_2 + \mathcal{P}_2 \, J_2 \right). \end{split}$$

and the space of Ad-invariant symmetric bilinear forms is two-dimensional. If the duals of J_a and P_a are identified with, respectively, P_a and J_a , the symmetric bilinear forms associated to C_1 and C_2 are

$$\begin{split} \langle J_a, P_b \rangle_s &= 0, & \langle J_a, J_b \rangle_s = g_{ab}, & \langle P_a, P_b \rangle_s = \chi \, g_{ab}. \\ \langle J_a, P_b \rangle_t &= g_{ab}, & \langle J_a, J_b \rangle_t = 0, & \langle P_a, P_b \rangle_t = 0, \end{split}$$

with $g = \operatorname{diag}(\alpha, 1, 1)$.

Quantum AdS $_{\omega}$ in (3+1)

so(3,1) and so(2,2) as Drinfel'd double Lie algebras

The complete classification of the six-dimensional DD Lie algebras is known ¹²

and is equivalent to the classification of three-dimensional real Lie bialgebras. ¹³

¹²L. Snobl and L. Hlavaty, Int. J. Mod. Phys. A 17 (2002) 4043

¹³X. Gomez, J. Math. Phys. 41 (2000) 4939

¹⁴A.B., F.J. Herranz, C. Meusburger, Class. Quantum Grav. 30 (2013) 155012

so(3,1) and so(2,2) as Drinfel'd double Lie algebras

The complete classification of the six-dimensional DD Lie algebras is known ¹² and is equivalent to the classification of three-dimensional real Lie bialgebras. ¹³

The **de Sitter Lie algebra** so(3, 1) admits four families of DD structures ¹⁴ $(c_{jk}^i | f_k^{ij} | \eta) : [X_i, X_j] = c_{ij}^k X_k [x^i, x^j] = f_k^{ij} x^k [x^i, X_j] = c_{jk}^i x^k - f_j^{ik} X_k.$

- A: $(8|5.ii|\eta) \equiv (so(2,1)|an(2)''|\eta)$
- B: $(9|5|\eta) \equiv (so(3)|\mathfrak{an}(2)|\eta)$
- C: $(7_0|5.ii|\eta) \equiv (iso(2)|\mathfrak{an}(2)''|\eta)$
- D: (7_μ|7_{1/μ}|η)

¹²L. Snobl and L. Hlavaty, Int. J. Mod. Phys. A 17 (2002) 4043

¹³X. Gomez, J. Math. Phys. 41 (2000) 4939

¹⁴A.B., F.J. Herranz, C. Meusburger, Class. Quantum Grav. 30 (2013) 155012

so(3,1) and so(2,2) as Drinfel'd double Lie algebras

The complete classification of the six-dimensional DD Lie algebras is known ¹² and is equivalent to the classification of three-dimensional real Lie bialgebras. ¹³

The de Sitter Lie algebra so(3,1) admits four families of DD structures ¹⁴ $(c_{ik}^{i}|f_{i}^{ij}|\eta): [X_i, X_j] = c_{ii}^k X_k [x^i, x^j] = f_k^{ij} x^k [x^i, X_j] = c_{ik}^i x^k - f_i^{ik} X_k.$

- A: $(8|5.ii|\eta) \equiv (so(2,1)|an(2)''|\eta)$
- B: $(9|5|\eta) \equiv (so(3)|an(2)|\eta)$
- C: $(7_0|5.ii|n) \equiv (iso(2)|an(2)''|n)$
- D: $(7_{\mu}|7_{1/\mu}|\eta)$

While the Anti de Sitter Lie algebra so(2, 2) admits three:

- E: $(8|5.i|n) \equiv (so(2,1)|an(2)'|n)$
- F: $(6_0|5.iii|\eta) \equiv (iso(1,1)|an(2)'''|\eta)$
- G: $(6_a | 6_{1/a} . i | \eta)$
- ¹²L. Snobl and L. Hlavaty, Int. J. Mod. Phys. A 17 (2002) 4043
- ¹³X. Gomez, J. Math. Phys. 41 (2000) 4939

¹⁴A.B., F.J. Herranz, C. Meusburger, Class, Quantum Grav. 30 (2013) 155012

Summary: DD *r*-matrices for so(3,1)

#	Metric	٨	Pairing	Skew-symmetric <i>r</i> -matrix	Space
A	(-1, 1, 1)	η^2	\langle , \rangle_t	$r'_{\rm A} = \eta J_1 \wedge J_2 + \frac{1}{2}(-P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2)$	\mathbf{dS}^{2+1}
		0	\langle , \rangle_t	$r'_{\rm A} = \frac{1}{2}(-P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2)$	M^{2+1}
В	(1, 1, 1)	$-\eta^2$	\langle , \rangle_t	$r_{\mathrm{B}}^{\prime}=-\eta J_{1}\wedge J_{2}+\tfrac{1}{2}(P_{0}\wedge J_{0}+P_{1}\wedge J_{1}+P_{2}\wedge J_{2})$	H^3
		0	\langle , \rangle_t	$r'_{\rm B} = \frac{1}{2}(P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2)$	E ³
С	(-1, 1, 1)	η^2	\langle , \rangle_t	$r_{\rm C}' = \frac{1}{2} (J_1 \wedge P_0 - J_0 \wedge P_1 + J_2 \wedge P_2)$	$\mathrm{d}\mathbf{S}^{2+1}$
		0	\langle , \rangle_t	$r'_{\rm C} = \frac{1}{2} (J_1 \wedge P_0 - J_0 \wedge P_1 + J_2 \wedge P_2)$	M^{2+1}
D	(1, 1, 1)	$-\eta^2$	$\frac{\mu(\mu^2-1)}{(1+\mu^2)^2}\langle \ ,\ \rangle_t$	$r'_{\rm D} = J_0 \wedge P_1 - J_1 \wedge P_0 + \frac{(1+\mu^2)}{2\mu} P_2 \wedge J_2$	H ³
			$-\frac{2\mu^2}{\eta(1+\mu^2)^2}\langle , \rangle_s$	$+rac{(\mu^2-1)}{2\eta\mu}(\eta^2 J_0\wedge J_1-P_0\wedge P_1)$	
		0	None	$r'_{\rm D} = J_0 \wedge P_1 - J_1 \wedge P_0 + P_2 \wedge J_2 (\mu = 1)$	E ³
#	Metric	٨	Pairing	Skew-symmetric <i>r</i> -matrix	Space
---	------------	-----------	--	--	---------------------
А	(-1, 1, 1)	η^2	\langle , \rangle_t	$r_{\mathrm{A}}' = \eta J_1 \wedge J_2 + rac{1}{2}(-P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2)$	\mathbf{dS}^{2+1}
		0	\langle , \rangle_t	$r'_{\rm A} = \frac{1}{2}(-P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2)$	\mathbf{M}^{2+1}
В	(1, 1, 1)	$-\eta^2$	\langle , \rangle_t	$r_{\mathrm{B}}^{\prime} = -\eta J_1 \wedge J_2 + \tfrac{1}{2} (P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2)$	H^3
		0	\langle , \rangle_t	$r'_{\rm B} = \frac{1}{2}(P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2)$	E ³
С	(-1, 1, 1)	η^2	\langle , \rangle_t	$r_{\mathrm{C}}^{\prime} = rac{1}{2} (J_1 \wedge P_0 - J_0 \wedge P_1 + J_2 \wedge P_2)$	\mathbf{dS}^{2+1}
		0	$\langle \ , \ \rangle_t$	$r_{\rm C}' = \frac{1}{2} (J_1 \wedge P_0 - J_0 \wedge P_1 + J_2 \wedge P_2)$	M^{2+1}
D	(1, 1, 1)	$-\eta^2$	$\frac{\mu(\mu^2-1)}{(1+\mu^2)^2}\langle \ ,\ \rangle_t$	$r'_{\rm D} = J_0 \wedge P_1 - J_1 \wedge P_0 + \frac{(1+\mu^2)}{2\mu} P_2 \wedge J_2$	H ³
			$-\frac{2\mu^2}{\eta(1+\mu^2)^2}\langle , \rangle_s$	$+rac{(\mu^2-1)}{2\eta\mu}(\eta^2 J_0\wedge J_1-P_0\wedge P_1)$	
		0	None	$r'_{\rm D} = J_0 \wedge P_1 - J_1 \wedge P_0 + P_2 \wedge J_2 (\mu = 1)$	E ³

• The κ -deformation is generated by $J_0 \wedge P_1 - J_1 \wedge P_0$.

#	Metric	٨	Pairing	Skew-symmetric <i>r</i> -matrix	Space
A	(-1, 1, 1)	η^2	\langle , \rangle_t	$r'_{\rm A} = \eta J_1 \wedge J_2 + \frac{1}{2}(-P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2)$	\mathbf{dS}^{2+1}
		0	\langle , \rangle_t	$r'_{\rm A} = \frac{1}{2}(-P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2)$	\mathbf{M}^{2+1}
В	(1, 1, 1)	$-\eta^2$	\langle , \rangle_t	$r_{\rm B}^\prime = -\eta J_1 \wedge J_2 + \frac{1}{2} (P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2)$	H^3
		0	\langle , \rangle_t	$r'_{\rm B} = \frac{1}{2}(P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2)$	E ³
С	(-1, 1, 1)	η^2	\langle , \rangle_t	$r_{\rm C}' = \frac{1}{2} (J_1 \wedge P_0 - J_0 \wedge P_1 + J_2 \wedge P_2)$	dS^{2+1}
		0	$\langle \ , \ \rangle_t$	$r_{\rm C}' = \frac{1}{2} (J_1 \wedge P_0 - J_0 \wedge P_1 + J_2 \wedge P_2)$	M^{2+1}
D	(1, 1, 1)	$-\eta^2$	$\frac{\mu(\mu^2-1)}{(1+\mu^2)^2}\langle \ ,\ \rangle_t$	$r'_{\rm D} = J_0 \wedge P_1 - J_1 \wedge P_0 + \frac{(1+\mu^2)}{2\mu} P_2 \wedge J_2$	H ³
			$-\frac{2\mu^2}{\eta(1+\mu^2)^2}\langle , \rangle_s$	$+rac{(\mu^2-1)}{2\eta\mu}(\eta^2 J_0 \wedge J_1 - P_0 \wedge P_1)$	
		0	None	$r'_{\rm D} = J_0 \wedge P_1 - J_1 \wedge P_0 + P_2 \wedge J_2 (\mu = 1)$	E ³

- The κ -deformation is generated by $J_0 \wedge P_1 J_1 \wedge P_0$.
- Case A–B corresponds to a deformation that has not been considered so far.

#	Metric	٨	Pairing	Skew-symmetric <i>r</i> -matrix	Space
Е	(-1, 1, 1)	$-\eta^2$	\langle , \rangle_t	$r'_{\rm E} = \eta J_0 \wedge J_2 + \frac{1}{2}(-P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2)$	AdS^{2+1}
		0	\langle , \rangle_t	$r'_{\rm E} = \frac{1}{2}(-P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2)$	M^{2+1}
F	(-1, 1, 1)	$-\eta^2$	\langle , \rangle_t	$r_{\rm F}' = \frac{1}{2} (J_1 \wedge P_0 - J_0 \wedge P_1 + J_2 \wedge P_2)$	AdS^{2+1}
		0	\langle , \rangle_t	$r_{\rm F}' = \frac{1}{2} (J_1 \wedge P_0 - J_0 \wedge P_1 + J_2 \wedge P_2)$	M^{2+1}
G	(-1, 1, 1)	$-\eta^2$	$\frac{(1+\rho^2)}{2\rho^2}\langle\cdot,\cdot\rangle_t$	$r_{ m G}' = rac{(1+ ho^2)}{4} (J_1 \wedge P_0 - J_0 \wedge P_1) + rac{ ho}{2} J_2 \wedge P_2$	AdS^{2+1}
			$+\frac{(1-\rho^2)}{2n\rho^2}\langle\cdot,\cdot\rangle_s$	$+rac{(1- ho^2)}{4\eta}(\eta^2 J_0\wedge J_1+P_0\wedge P_1)$	
		0	None	None	M^{2+1}

#	Metric	٨	Pairing	Skew-symmetric <i>r</i> -matrix	Space
E	(-1, 1, 1)	$-\eta^2$	\langle , \rangle_t	$r_{\rm E}' = \eta J_0 \wedge J_2 + \frac{1}{2} (-P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2)$	AdS^{2+1}
		0	\langle , \rangle_t	$r'_{\rm E} = \frac{1}{2}(-P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2)$	M^{2+1}
F	(-1, 1, 1)	$-\eta^2$	\langle , \rangle_t	$r_{\mathrm{F}}' = \frac{1}{2} (J_1 \wedge P_0 - J_0 \wedge P_1 + J_2 \wedge P_2)$	\mathbf{AdS}^{2+1}
		0	\langle , \rangle_t	$r_{\rm F}' = \frac{1}{2} (J_1 \wedge P_0 - J_0 \wedge P_1 + J_2 \wedge P_2)$	M^{2+1}
G	(-1, 1, 1)	$-\eta^2$	$\frac{(1+\rho^2)}{2\rho^2}\langle\cdot,\cdot\rangle_t$	$r_{\rm G}' = rac{(1+ ho^2)}{4} (J_1 \wedge P_0 - J_0 \wedge P_1) + rac{ ho}{2} J_2 \wedge P_2$	AdS^{2+1}
			$+\frac{(1-\rho^2)}{2n\rho^2}\langle\cdot,\cdot\rangle_s$	$+rac{(1- ho^2)}{4\eta}(\eta^2 J_0\wedge J_1+P_0\wedge P_1)$	
		0	None	None	M^{2+1}

• The κ -deformation $J_0 \wedge P_1 - J_1 \wedge P_0$ appears again combined with a twist.

#	Metric	٨	Pairing	Skew-symmetric <i>r</i> -matrix	Space
Е	(-1, 1, 1)	$-\eta^2$	\langle , \rangle_t	$r'_{\rm E} = \eta J_0 \wedge J_2 + \frac{1}{2}(-P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2)$	AdS^{2+1}
		0	\langle , \rangle_t	$r'_{\rm E} = \frac{1}{2}(-P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2)$	M^{2+1}
F	(-1, 1, 1)	$-\eta^2$	\langle , \rangle_t	$r_{\rm F}' = \frac{1}{2} (J_1 \wedge P_0 - J_0 \wedge P_1 + J_2 \wedge P_2)$	AdS^{2+1}
		0	\langle , \rangle_t	$r_{\rm F}' = \frac{1}{2} (J_1 \wedge P_0 - J_0 \wedge P_1 + J_2 \wedge P_2)$	M^{2+1}
G	(-1, 1, 1)	$-\eta^2$	$\frac{(1+\rho^2)}{2\rho^2}\langle\cdot,\cdot\rangle_t$	$r_{ m G}' = rac{(1+ ho^2)}{4} (J_1 \wedge P_0 - J_0 \wedge P_1) + rac{ ho}{2} J_2 \wedge P_2$	\mathbf{AdS}^{2+1}
			$+\frac{(1-\rho^2)}{2n\rho^2}\langle\cdot,\cdot\rangle_s$	$+rac{(1- ho^2)}{4\eta}(\eta^2 J_0\wedge J_1+P_0\wedge P_1)$	
		0	None	None	\mathbf{M}^{2+1}

- The κ -deformation $J_0 \wedge P_1 J_1 \wedge P_0$ appears again combined with a twist.
- Case E is again similar to cases A-B.

#	Metric	٨	Pairing	Skew-symmetric <i>r</i> -matrix	Space
Е	(-1, 1, 1)	$-\eta^2$	\langle , \rangle_t	$r'_{\rm E} = \eta J_0 \wedge J_2 + \frac{1}{2}(-P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2)$	AdS^{2+1}
		0	\langle , \rangle_t	$r'_{\rm E} = \frac{1}{2}(-P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2)$	M^{2+1}
F	(-1, 1, 1)	$-\eta^2$	\langle , \rangle_t	$r_{\rm F}' = \frac{1}{2} (J_1 \wedge P_0 - J_0 \wedge P_1 + J_2 \wedge P_2)$	AdS^{2+1}
		0	\langle , \rangle_t	$r_{\rm F}' = \frac{1}{2} (J_1 \wedge P_0 - J_0 \wedge P_1 + J_2 \wedge P_2)$	M^{2+1}
G	(-1, 1, 1)	$-\eta^2$	$\frac{(1+\rho^2)}{2\rho^2}\langle\cdot,\cdot\rangle_t$	$r_{ m G}' = rac{(1+ ho^2)}{4} (J_1 \wedge P_0 - J_0 \wedge P_1) + rac{ ho}{2} J_2 \wedge P_2$	\mathbf{AdS}^{2+1}
			$+\frac{(1-\rho^2)}{2n\rho^2}\langle\cdot,\cdot\rangle_s$	$+rac{(1- ho^2)}{4\eta}(\eta^2 J_0\wedge J_1+P_0\wedge P_1)$	
		0	None	None	\mathbf{M}^{2+1}

- The κ -deformation $J_0 \wedge P_1 J_1 \wedge P_0$ appears again combined with a twist.
- Case E is again similar to cases A-B.

Essentially, we have two different DD quantum deformations for (A)dS in (2+1) dimensions:

Essentially, we have two different DD quantum deformations for (A)dS in (2+1) dimensions:

The twisted κ-Ads case (C,F) generated by

$$r' = \frac{1}{2}(J_1 \wedge P_0 - J_0 \wedge P_1 + J_2 \wedge P_2)$$

Essentially, we have two different DD quantum deformations for (A)dS in (2+1) dimensions:

• The twisted κ-Ads case (C,F) generated by

$$r' = \frac{1}{2}(J_1 \wedge P_0 - J_0 \wedge P_1 + J_2 \wedge P_2)$$

• Case (A,E): a 'Snyder-type' deformation arising from the so(2,1) Lorentz subalgebra plus three twists:

$$r' = \eta J_0 \wedge J_2 + \frac{1}{2} (-P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2)$$

Essentially, we have two different DD quantum deformations for (A)dS in (2+1) dimensions:

The twisted κ-Ads case (C,F) generated by

$$r' = \frac{1}{2}(J_1 \wedge P_0 - J_0 \wedge P_1 + J_2 \wedge P_2)$$

• Case (A,E): a 'Snyder-type' deformation arising from the so(2,1) Lorentz subalgebra plus three twists:

$$r' = \eta J_0 \wedge J_2 + \frac{1}{2} (-P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2)$$

Since $\Lambda = \pm \eta^2$, the flat (Poincaré) limit is obtained when $\eta \rightarrow 0$.

3. The twisted κ -AdS $_{\omega}$ algebra in (2+1) dimensions

The AdS_{ω} algebra in (2+1) dimensions

The **6D** Lie algebra AdS_{ω} of the three relativistic spacetimes of constant curvature is given in terms of the generators $\{J, P_0, P_i, K_i\}$ as

$$\begin{bmatrix} J, P_i \end{bmatrix} = \epsilon_{ij} P_j, \qquad \begin{bmatrix} J, K_i \end{bmatrix} = \epsilon_{ij} K_j, \qquad \begin{bmatrix} J, P_0 \end{bmatrix} = 0, \\ \begin{bmatrix} P_i, K_j \end{bmatrix} = -\delta_{ij} P_0, \qquad \begin{bmatrix} P_0, K_i \end{bmatrix} = -P_i, \qquad \begin{bmatrix} K_1, K_2 \end{bmatrix} = -J, \\ \begin{bmatrix} P_0, P_i \end{bmatrix} = \omega K_i, \qquad \begin{bmatrix} P_1, P_2 \end{bmatrix} = -\omega J,$$

where $\omega = -\Lambda$, i, j = 1, 2 and $\epsilon_{12} = 1$.

The AdS_{o} , algebra in (2+1) dimensions

The **6D** Lie algebra AdS_{ω} of the three relativistic spacetimes of constant curvature is given in terms of the generators $\{J, P_0, P_i, K_i\}$ as

$[J, P_i] = \epsilon_{ij} P_j,$	$[J, K_i] = \epsilon_{ij} K_j,$	$[J,P_0]=0,$
$[P_i, K_j] = -\delta_{ij}P_0,$	$[P_0, K_i] = -P_i,$	$[K_1, K_2] = -J,$
$[P_0, P_i] = \omega K_i,$	$[P_1,P_2]=-\omega J,$	

where $\omega = -\Lambda$, i, j = 1, 2 and $\epsilon_{12} = 1$.

According to the sign of ω we find that these Lie brackets reproduce:

- The AdS algebra, so(2,2), when $\omega = +1/R^2 > 0$.
- The dS algebra, so(3, 1), when $\omega = -1/R^2 < 0$.
- And the **Poincaré** algebra, *iso*(2, 1), when $\omega = 0$; it corresponds to the flat limit/contraction $R \to \infty$ such that $so(2,2) \to iso(2,1) \leftarrow so(3,1)$.

The AdS_{ω} algebra in (2+1) dimensions

The **6D** Lie algebra AdS_{ω} of the three relativistic spacetimes of constant curvature is given in terms of the generators $\{J, P_0, P_i, K_i\}$ as

$[J, P_i] = \epsilon_{ij} P_j,$	$[J, K_i] = \epsilon_{ij} K_j,$	$[J,P_0]=0,$
$[P_i, K_j] = -\delta_{ij} P_0,$	$[P_0, K_i] = -P_i,$	$[K_1, K_2] = -J,$
$[P_0, P_i] = \omega K_i,$	$[P_1,P_2]=-\omega J,$	

where $\omega = -\Lambda$, i, j = 1, 2 and $\epsilon_{12} = 1$.

According to the sign of ω we find that these Lie brackets reproduce:

- The AdS algebra, so(2,2), when $\omega = +1/R^2 > 0$.
- The dS algebra, so(3, 1), when $\omega = -1/R^2 < 0$.
- And the **Poincaré** algebra, *iso*(2, 1), when $\omega = 0$; it corresponds to the flat limit/contraction $R \to \infty$ such that $so(2,2) \to iso(2,1) \leftarrow so(3,1)$.

The two **Casimir invariants** of AdS_{ω} are given by

$$\mathcal{C} = P_0^2 - \mathbf{P}^2 + \omega (J^2 - \mathbf{K}^2)$$
 $\mathcal{W} = -JP_0 + K_1P_2 - K_2P_1$

C comes from the Killing–Cartan form, and W is the Pauli–Lubanski vector.

The kappa-AdS $_{\omega}$ quantum group: first order relations

Let us consider the following classical r-matrix on AdS_{ω}

$$r = z(K_1 \wedge P_1 + K_2 \wedge P_2) + \vartheta J \wedge P_0$$

where $z = 1/\kappa = \ln q$.

The parameter ϑ is a generic one associated to the twist, that for $\vartheta = -iz$ yields the DD structure.

The kappa-AdS $_{\omega}$ quantum group: first order relations

Let us consider the following classical r-matrix on AdS_{ω}

$$r = z(K_1 \wedge P_1 + K_2 \wedge P_2) + \vartheta J \wedge P_0$$

where $z = 1/\kappa = \ln q$.

The parameter ϑ is a generic one associated to the twist, that for $\vartheta = -iz$ yields the DD structure.

• The first order deformation of the coproduct is given by the cocommutator δ through the relation $\delta(Y_i) = [1 \otimes Y_i + Y_i \otimes 1, r]$:

$$\begin{split} \delta(P_0) &= \delta(J) = 0, \\ \delta(P_1) &= z(P_1 \wedge P_0 - \omega K_2 \wedge J) + \vartheta(P_0 \wedge P_2 + \omega K_1 \wedge J), \\ \delta(P_2) &= z(P_2 \wedge P_0 + \omega K_1 \wedge J) - \vartheta(P_0 \wedge P_1 - \omega K_2 \wedge J), \\ \delta(K_1) &= z(K_1 \wedge P_0 + P_2 \wedge J) + \vartheta(P_0 \wedge K_2 - P_1 \wedge J), \\ \delta(K_2) &= z(K_2 \wedge P_0 - P_1 \wedge J) - \vartheta(P_0 \wedge K_1 + P_2 \wedge J). \end{split}$$

Twisted κ -AdS_{ω} guantum group: first order relations

We denote by $\{\hat{\theta}, \hat{x}_{\mu}, \hat{\xi}_i\}$ the **dual non-commutative coordinates** of the generators $\{J, P_{\mu}, K_i\}$, respectively.

The dual of the cocommutator map gives the first order quantum group:

 $[\hat{x}_0, \hat{x}_1] = -z\hat{x}_1 - \vartheta\hat{x}_2, \qquad [\hat{x}_0, \hat{x}_2] = -z\hat{x}_2 + \vartheta\hat{x}_1, \qquad [\hat{x}_1, \hat{x}_2] = 0,$

as well as

$$\begin{split} & [\hat{\theta}, \hat{x}_i] = z\epsilon_{ij}\,\hat{\xi}_j + \vartheta\hat{\xi}_i & [\hat{\theta}, \hat{\xi}_i] = -\omega\left(z\epsilon_{ij}\,\hat{x}_j + \vartheta\hat{x}_i\right), & [\hat{\theta}, \hat{x}_0] = 0, \\ & [\hat{x}_0, \hat{\xi}_i] = -z\hat{\xi}_i - \vartheta\epsilon_{ij}\,\hat{\xi}_j, & [\hat{\xi}_1, \hat{\xi}_2] = 0, & [\hat{x}_i, \hat{\xi}_j] = 0, & i, j = 1, 2. \end{split}$$

¹⁵P. Maslanka, J. Phys. A 26 (1993) L1251

¹⁶S. Majid, H. Ruegg, Phys. Lett. B 334 (1994) 348

¹⁷S. Zakrzewski, J. Phys. A 27 (1994) 2075

Twisted κ -AdS_{ω} guantum group: first order relations

We denote by $\{\hat{\theta}, \hat{x}_{\mu}, \hat{\xi}_i\}$ the **dual non-commutative coordinates** of the generators $\{J, P_{\mu}, K_i\}$, respectively.

The dual of the cocommutator map gives the **first order quantum group**:

 $[\hat{x}_0, \hat{x}_1] = -z\hat{x}_1 - \vartheta\hat{x}_2, \qquad [\hat{x}_0, \hat{x}_2] = -z\hat{x}_2 + \vartheta\hat{x}_1, \qquad [\hat{x}_1, \hat{x}_2] = 0,$

as well as

$$\begin{split} & [\hat{\theta}, \hat{x}_i] = z\epsilon_{ij}\,\hat{\xi}_j + \vartheta\hat{\xi}_i & [\hat{\theta}, \hat{\xi}_i] = -\omega\left(z\epsilon_{ij}\,\hat{x}_j + \vartheta\hat{x}_i\right), & [\hat{\theta}, \hat{x}_0] = 0, \\ & [\hat{x}_0, \hat{\xi}_i] = -z\hat{\xi}_i - \vartheta\epsilon_{ij}\,\hat{\xi}_j, & [\hat{\xi}_1, \hat{\xi}_2] = 0, & [\hat{x}_i, \hat{\xi}_j] = 0, & i, j = 1, 2. \end{split}$$

The well-known κ -Minkowski spacetime ^{15 16 17} is given by

$$[\hat{x}_0, \hat{x}_1] = -z \hat{x}_1, \qquad [\hat{x}_0, \hat{x}_2] = -z \hat{x}_2, \qquad [\hat{x}_1, \hat{x}_2] = 0, \qquad z = 1/\kappa.$$

¹⁵P. Maslanka, J. Phys. A 26 (1993) L1251

¹⁶S. Majid, H. Ruegg, Phys. Lett. B 334 (1994) 348

¹⁷S. Zakrzewski, J. Phys. A 27 (1994) 2075

Twisted κ -Minkowski spacetime

The 'quantum' time and space translation parameters do not commute:

 $[\hat{x}_0, \hat{x}_1] = -z\hat{x}_1 - \vartheta \hat{x}_2, \qquad [\hat{x}_0, \hat{x}_2] = -z\hat{x}_2 + \vartheta \hat{x}_1, \qquad [\hat{x}_1, \hat{x}_2] = 0.$

This algebra is not isomorphic to κ -Minkowski as a real Lie algebra. ۲

Twisted κ -Minkowski spacetime

The 'quantum' time and space translation parameters do not commute:

 $[\hat{x}_0, \hat{x}_1] = -z\hat{x}_1 - \vartheta \hat{x}_2, \qquad [\hat{x}_0, \hat{x}_2] = -z\hat{x}_2 + \vartheta \hat{x}_1, \qquad [\hat{x}_1, \hat{x}_2] = 0.$

- This algebra is not isomorphic to κ-Minkowski as a real Lie algebra.
- These relations do not depend on ω, so the three first order (A)dS and Minkowskian non-commutative spacetimes coincide.
- Higher order corrections depending on ω will appear when the full quantum (A)dS groups are considered.

Twisted κ -Minkowski spacetime

The 'quantum' time and space translation parameters do not commute:

 $[\hat{x}_0, \hat{x}_1] = -z\hat{x}_1 - \vartheta \hat{x}_2, \qquad [\hat{x}_0, \hat{x}_2] = -z\hat{x}_2 + \vartheta \hat{x}_1, \qquad [\hat{x}_1, \hat{x}_2] = 0.$

- This algebra is not isomorphic to κ-Minkowski as a real Lie algebra.
- These relations do not depend on ω, so the three first order (A)dS and Minkowskian non-commutative spacetimes coincide.
- Higher order corrections depending on ω will appear when the full quantum (A)dS groups are considered.
- Other 'quantum' coordinates (rotation angle, velocities) are also non-commuting objects.

The κ -AdS $_{\omega}$ Poisson-Lie group

The quantization of the PL group associated to the previous r matrix will give rise to the all-orders twisted quantum AdS_{ω} group.

The κ -AdS $_{\omega}$ Poisson-Lie group

The quantization of the PL group associated to the previous r matrix will give rise to the all-orders twisted quantum AdS_{ω} group.

Therefore, we have to compute:

• The group element

 $T = \exp(x_0 P_0) \exp(x_1 P_1) \exp(x_2 P_2) \exp(\xi_1 K_1) \exp(\xi_2 K_2) \exp(\theta J)$

- Left and right invariant vector fields, Y^L and Y^R
- The Sklyanin bracket:

$$\{f,g\} = r^{ij}(Y_i^L f Y_j^L g - Y_i^R f Y_j^R g)$$

where

$$r = z(K_1 \wedge P_1 + K_2 \wedge P_2) + \vartheta J \wedge P_0$$

In this way we obtain the **fundamental Poisson–Lie brackets** between the six *commutative* group coordinates $\{\theta, x_{\mu}, \xi_i\}$.

Quantum AdS $_{\omega}$ in (3+1)

Fundamental Poisson brackets I

Relations involving spacetime x_{μ} group coordinates:

$$\{x_0, x_1\} = -z \frac{\tanh\sqrt{\omega}x_1}{\sqrt{\omega}\cosh^2\sqrt{\omega}x_2} - \vartheta \cosh\sqrt{\omega}x_1 \frac{\tanh\sqrt{\omega}x_2}{\sqrt{\omega}}$$
$$\{x_0, x_2\} = -z \frac{\tanh\sqrt{\omega}x_2}{\sqrt{\omega}} + \vartheta \frac{\sinh\sqrt{\omega}x_1}{\sqrt{\omega}}$$
$$\{x_1, x_2\} = 0$$

(A)dS algebras as DDs (2+1) twisted κ -AdS $_{\omega}$ algebra

С

Fundamental Poisson brackets II

$$\begin{cases} x_1, \xi_1 \} = \frac{z}{\cosh \sqrt{\omega} x_2} \left(\frac{\cosh \sqrt{\omega} x_2}{\cosh \sqrt{\omega} x_1} - \frac{\cosh \xi_1}{\cosh \xi_2} + \tanh \sqrt{\omega} x_1 \sinh \sqrt{\omega} x_2 A \right), \\ \{x_1, \xi_2 \} = -z \cosh \xi_2 B, \qquad \{x_2, \xi_2 \} = z \left(\frac{\cosh \sqrt{\omega} x_1}{\cosh \sqrt{\omega} x_2} \cosh \xi_1 - \cosh \xi_2 \right), \\ \{x_2, \xi_1 \} = -zA, \qquad \{\xi_1, \xi_2 \} = z \sqrt{\omega} \sinh \sqrt{\omega} x_1 \left(C - \frac{\tanh \xi_2}{\cosh^2 \sqrt{\omega} x_2} \right), \\ \{x_0, \theta \} = -\frac{zB}{\cosh \sqrt{\omega} x_1} + \frac{\vartheta}{2} \frac{\cosh \xi_1 (\cosh 2\sqrt{\omega} x_1 - \cosh 2\xi_2)}{\cosh \sqrt{\omega} x_1 \cosh \sqrt{\omega} x_2 \cosh \xi_2}, \\ \{x_0, \xi_1 \} = z \left(\frac{\sinh \xi_2}{\cosh \sqrt{\omega} x_1} B - \frac{\sinh \xi_1 \cosh \xi_2}{\cosh \sqrt{\omega} x_1 \cosh \sqrt{\omega} x_2} \right) - \vartheta \frac{\cosh \sqrt{\omega} x_1 \cosh \xi_1 \tanh \xi_2}{\cosh \sqrt{\omega} x_2}, \\ \{x_0, \xi_2 \} = -zC + \vartheta \frac{\cosh \sqrt{\omega} x_1 \sinh \xi_1}{\cosh \sqrt{\omega} x_2}, \qquad \{\theta, x_1\} = z \frac{\cosh \sqrt{\omega} x_1 \cosh \xi_1 \cosh \xi_2}{\cosh \sqrt{\omega} x_2}, \\ \{\theta, \xi_1\} = -z \sqrt{\omega} (\tanh \sqrt{\omega} x_2 + \tanh \sqrt{\omega} x_1 B) - \vartheta \frac{\sqrt{\omega} \tanh \sqrt{\omega} x_1 \cosh \xi_1 \cosh \xi_2}{\cosh \sqrt{\omega} x_2}, \\ \{\theta, \xi_2\} = \frac{z \sqrt{\omega} \sinh \sqrt{\omega} x_2}{\cosh \sqrt{\omega} x_2} - \vartheta \sqrt{\omega} \tanh \sqrt{\omega} x_2 \cosh \xi_2, \\ A = \frac{\sinh \sqrt{\omega} x_1 \sinh \sqrt{\omega} x_2 + \cosh \sqrt{\omega} x_1 \sinh \xi_1}{\cosh \sqrt{\omega} x_2}, \qquad B = \frac{\sinh \sqrt{\omega} x_1 \tanh \sqrt{\omega} x_2 \cosh \xi_1 + \sinh \xi_1 \sinh \xi_2}{\cosh \sqrt{\omega} x_2 \cosh \xi_2}, \\ C = \frac{\sinh \sqrt{\omega} x_1 \tanh \sqrt{\omega} x_2 \sinh \xi_1 + \cosh \xi_2}{\cosh \sqrt{\omega} x_2}. \end{cases}$$

Non-commutative AdS_{ω} spacetimes

The quantum AdS_{ω} group in 'local coordinates' would be the quantization of the above PL bracket. In particular:

Non-commutative AdS_{ω} spacetimes

The quantum AdS_{ω} group in 'local coordinates' would be the quantization of the above PL bracket. In particular:

• Since $\{x_1, x_2\} = 0$ the quantum (2+1)D non-commutative AdS_{ω} space-time can be defined as

$$\begin{split} \left[\hat{\mathbf{x}}_{0}, \hat{\mathbf{x}}_{1} \right] &= -z \, \frac{\tanh \sqrt{\omega} \hat{\mathbf{x}}_{1}}{\sqrt{\omega} \cosh^{2} \sqrt{\omega} \hat{\mathbf{x}}_{2}} - \vartheta \cosh \sqrt{\omega} \hat{\mathbf{x}}_{1} \frac{\tanh \sqrt{\omega} \hat{\mathbf{x}}_{2}}{\sqrt{\omega}} \\ &= -z \left(\hat{\mathbf{x}}_{1} - \frac{1}{3} \omega \hat{\mathbf{x}}_{1}^{3} - \omega \hat{\mathbf{x}}_{1} \hat{\mathbf{x}}_{2}^{2} \right) - \vartheta \left(\hat{\mathbf{x}}_{2} + \frac{1}{2} \omega \hat{\mathbf{x}}_{1}^{2} \hat{\mathbf{x}}_{2} - \frac{1}{3} \omega \hat{\mathbf{x}}_{2}^{3} \right) + \mathcal{O}(\omega^{2}) \\ \left[\hat{\mathbf{x}}_{0}, \hat{\mathbf{x}}_{2} \right] &= -z \, \frac{\tanh \sqrt{\omega} \hat{\mathbf{x}}_{2}}{\sqrt{\omega}} + \vartheta \, \frac{\sinh \sqrt{\omega} \hat{\mathbf{x}}_{1}}{\sqrt{\omega}} \\ &= -z \left(\hat{\mathbf{x}}_{2} - \frac{1}{3} \omega \hat{\mathbf{x}}_{2}^{3} \right) + \vartheta \left(\hat{\mathbf{x}}_{1} + \frac{1}{6} \omega \hat{\mathbf{x}}_{1}^{3} \right) + \mathcal{O}(\omega^{2}), \\ \left[\hat{\mathbf{x}}_{1}, \hat{\mathbf{x}}_{2} \right] &= \mathbf{0}. \end{split}$$

Non-commutative AdS_w spacetimes

The quantum AdS_{ω} group in 'local coordinates' would be the quantization of the above PL bracket. In particular:

• Since $\{x_1, x_2\} = 0$ the quantum (2+1)D non-commutative AdS_{ω} space-time can be defined as

$$\begin{split} [\hat{\mathbf{x}}_{0}, \hat{\mathbf{x}}_{1}] &= -z \, \frac{\tanh \sqrt{\omega} \hat{\mathbf{x}}_{1}}{\sqrt{\omega} \cosh^{2} \sqrt{\omega} \hat{\mathbf{x}}_{2}} - \vartheta \cosh \sqrt{\omega} \hat{\mathbf{x}}_{1} \frac{\tanh \sqrt{\omega} \hat{\mathbf{x}}_{2}}{\sqrt{\omega}} \\ &= -z \left(\hat{\mathbf{x}}_{1} - \frac{1}{3} \omega \hat{\mathbf{x}}_{1}^{3} - \omega \hat{\mathbf{x}}_{1} \hat{\mathbf{x}}_{2}^{2} \right) - \vartheta \left(\hat{\mathbf{x}}_{2} + \frac{1}{2} \omega \hat{\mathbf{x}}_{1}^{2} \hat{\mathbf{x}}_{2} - \frac{1}{3} \omega \hat{\mathbf{x}}_{2}^{3} \right) + \mathcal{O}(\omega^{2}) \\ [\hat{\mathbf{x}}_{0}, \hat{\mathbf{x}}_{2}] &= -z \, \frac{\tanh \sqrt{\omega} \hat{\mathbf{x}}_{2}}{\sqrt{\omega}} + \vartheta \, \frac{\sinh \sqrt{\omega} \hat{\mathbf{x}}_{1}}{\sqrt{\omega}} \\ &= -z \left(\hat{\mathbf{x}}_{2} - \frac{1}{3} \omega \hat{\mathbf{x}}_{2}^{3} \right) + \vartheta \left(\hat{\mathbf{x}}_{1} + \frac{1}{6} \omega \hat{\mathbf{x}}_{1}^{3} \right) + \mathcal{O}(\omega^{2}), \\ [\hat{\mathbf{x}}_{1}, \hat{\mathbf{x}}_{2}] &= \mathbf{0}. \end{split}$$

• The twisted κ -Minkowski space M_z^{2+1} is the first-order noncommutative spacetime for all the AdS_{ω} groups.

The AdS_{ω} universal enveloping algebra has the following cocommutative Hopf algebra structure

$$\begin{split} \Delta(P_0) &= 1 \otimes P_0 + P_0 \otimes 1, \qquad \Delta(J) = 1 \otimes J + J \otimes 1, \\ \Delta(P_i) &= 1 \otimes P_i + P_i \otimes 1, \qquad \Delta(K_i) = 1 \otimes K_i + K_i \otimes 1 \end{split}$$

The AdS_{ω} universal enveloping algebra has the following cocommutative Hopf algebra structure

$$\Delta(P_0) = 1 \otimes P_0 + P_0 \otimes 1, \qquad \Delta(J) = 1 \otimes J + J \otimes 1,$$

 $\Delta(P_i) = 1 \otimes P_i + P_i \otimes 1, \qquad \Delta(K_i) = 1 \otimes K_i + K_i \otimes 1$

The κ -AdS $_{\omega}$ *r*-matrix

$$r = z(K_1 \wedge P_1 + K_2 \wedge P_2)$$

provides the first order deformation of the coproduct

$$\Delta = \sum_{k=0}^{\infty} \Delta_{(k)} = \sum_{k=0}^{\infty} \eta^k \delta_{(k)} = \Delta_0 + z \, \delta_{(1)} + o[z^2]$$

$$\delta(P_0) = 0 \qquad \delta(J) = 0$$

$$\delta(P_i) = z(P_i \wedge P_0 - \omega \epsilon_{ij} K_j \wedge J)$$

$$\delta(K_i) = z(K_i \wedge P_0 + \epsilon_{ij} P_j \wedge J).$$

The full (all orders in z) quantum universal enveloping algebra of the κ -deformation of AdS $_{\omega}$ can be constructed¹⁸ and reads

$$\begin{split} \Delta(P_0) &= 1 \otimes P_0 + P_0 \otimes 1, \qquad \Delta(J) = 1 \otimes J + J \otimes 1, \\ \Delta(P_i) &= e^{-\frac{z}{2}P_0} \cosh(\frac{z}{2}\sqrt{\omega}J) \otimes P_i + P_i \otimes e^{\frac{z}{2}P_0} \cosh(\frac{z}{2}\sqrt{\omega}J) \\ &+ \sqrt{\omega} e^{-\frac{z}{2}P_0} \sinh(\frac{z}{2}\sqrt{\omega}J) \otimes \epsilon_{ij}K_j - \sqrt{\omega} \epsilon_{ij}K_j \otimes e^{\frac{z}{2}P_0} \sinh(\frac{z}{2}\sqrt{\omega}J), \\ \Delta(K_i) &= e^{-\frac{z}{2}P_0} \cosh(\frac{z}{2}\sqrt{\omega}J) \otimes K_i + K_i \otimes e^{\frac{z}{2}P_0} \cosh(\frac{z}{2}\sqrt{\omega}J) \\ &- e^{-\frac{z}{2}P_0} \frac{\sinh(\frac{z}{2}\sqrt{\omega}J)}{\sqrt{\omega}} \otimes \epsilon_{ij}P_j + \epsilon_{ij}P_j \otimes e^{\frac{z}{2}P_0} \frac{\sinh(\frac{z}{2}\sqrt{\omega}J)}{\sqrt{\omega}}, \end{split}$$

¹⁸A.B., F.J. Herranz, M.A. del Olmo, M. Santander, J. Phys. A **27** (1994) 1283.

The full (all orders in z) quantum universal enveloping algebra of the κ -deformation of AdS $_{\omega}$ can be constructed¹⁸ and reads

$$\begin{split} \Delta(P_0) &= 1 \otimes P_0 + P_0 \otimes 1, \qquad \Delta(J) = 1 \otimes J + J \otimes 1, \\ \Delta(P_i) &= e^{-\frac{z}{2}P_0} \cosh(\frac{z}{2}\sqrt{\omega}J) \otimes P_i + P_i \otimes e^{\frac{z}{2}P_0} \cosh(\frac{z}{2}\sqrt{\omega}J) \\ &+ \sqrt{\omega} e^{-\frac{z}{2}P_0} \sinh(\frac{z}{2}\sqrt{\omega}J) \otimes \epsilon_{ij}K_j - \sqrt{\omega} \epsilon_{ij}K_j \otimes e^{\frac{z}{2}P_0} \sinh(\frac{z}{2}\sqrt{\omega}J), \\ \Delta(K_i) &= e^{-\frac{z}{2}P_0} \cosh(\frac{z}{2}\sqrt{\omega}J) \otimes K_i + K_i \otimes e^{\frac{z}{2}P_0} \cosh(\frac{z}{2}\sqrt{\omega}J) \\ &- e^{-\frac{z}{2}P_0} \frac{\sinh(\frac{z}{2}\sqrt{\omega}J)}{\sqrt{\omega}} \otimes \epsilon_{ij}P_j + \epsilon_{ij}P_j \otimes e^{\frac{z}{2}P_0} \frac{\sinh(\frac{z}{2}\sqrt{\omega}J)}{\sqrt{\omega}}, \\ [J, P_i] &= \epsilon_{ij}P_j, \qquad [J, K_i] = \epsilon_{ij}K_j, \qquad [J, P_0] = 0, \\ [P_i, K_j] &= -\delta_{ij} \frac{\sinh(zP_0)}{z} \cosh(z\sqrt{\omega}J), \qquad [P_0, K_i] = -P_i, \\ [K_1, K_2] &= -\cosh(zP_0) \frac{\sinh(z\sqrt{\omega}J)}{z\sqrt{\omega}}, \qquad [P_0, P_i] = \omega K_i, \\ [P_1, P_2] &= -\omega \cosh(zP_0) \frac{\sinh(z\sqrt{\omega}J)}{z\sqrt{\omega}}, \end{split}$$

¹⁸A.B., F.J. Herranz, M.A. del Olmo, M. Santander, J. Phys. A **27** (1994) 1283.

Quantum κ -AdS_{ω} algebra in (2+1)

• This is exactly the quantum (A)dS algebra introduced in ¹⁹ as the symmetry algebra of the vacuum excitations in (2+1) quantum gravity.

¹⁹G. Amelino-Camelia, L. Smolin, A. Starodubtsev, Class.Quant.Grav. (2004) 3095.

- This is exactly the quantum (A)dS algebra introduced in ¹⁹ as the symmetry algebra of the vacuum excitations in (2+1) quantum gravity.
- Quantum Casimir invariants read

$$\begin{aligned} \mathcal{C}_{z} &= 4\cos(z\sqrt{\omega}) \left\{ \frac{\sinh^{2}(\frac{z}{2}P_{0})}{z^{2}} \cosh^{2}\left(\frac{z}{2}\sqrt{\omega}J\right) + \frac{\sinh^{2}(\frac{z}{2}\sqrt{\omega}J)}{z^{2}} \cosh^{2}\left(\frac{z}{2}P_{0}\right) \right\} \\ &- \frac{\sin(z\sqrt{\omega})}{z\sqrt{\omega}} \left(\mathbf{P}^{2} + \omega\mathbf{K}^{2}\right) \\ \mathcal{W}_{z} &= -\cos(z\sqrt{\omega}) \frac{\sinh(z\sqrt{\omega}J)}{z\sqrt{\omega}} \frac{\sinh(zP_{0})}{z} + \frac{\sin(z\sqrt{\omega})}{z\sqrt{\omega}} (\mathcal{K}_{1}P_{2} - \mathcal{K}_{2}P_{1}). \end{aligned}$$

¹⁹G. Amelino-Camelia, L. Smolin, A. Starodubtsev, Class.Quant.Grav. (2004) 3095.

- This is exactly the quantum (A)dS algebra introduced in ¹⁹ as the symmetry algebra of the vacuum excitations in (2+1) quantum gravity.
- Quantum Casimir invariants read

$$\begin{aligned} \mathcal{C}_{z} &= 4\cos(z\sqrt{\omega}) \left\{ \frac{\sinh^{2}(\frac{z}{2}P_{0})}{z^{2}} \cosh^{2}\left(\frac{z}{2}\sqrt{\omega}J\right) + \frac{\sinh^{2}(\frac{z}{2}\sqrt{\omega}J)}{z^{2}} \cosh^{2}\left(\frac{z}{2}P_{0}\right) \right\} \\ &- \frac{\sin(z\sqrt{\omega})}{z\sqrt{\omega}} \left(\mathbf{P}^{2} + \omega\mathbf{K}^{2}\right) \\ \mathcal{W}_{z} &= -\cos(z\sqrt{\omega}) \frac{\sinh(z\sqrt{\omega}J)}{z\sqrt{\omega}} \frac{\sinh(zP_{0})}{z} + \frac{\sin(z\sqrt{\omega})}{z\sqrt{\omega}} (\mathcal{K}_{1}P_{2} - \mathcal{K}_{2}P_{1}). \end{aligned}$$

• Note that in AdS_{ω} momenta do not commute.

¹⁹G. Amelino-Camelia, L. Smolin, A. Starodubtsev, Class.Quant.Grav. (2004) 3095.

- This is exactly the quantum (A)dS algebra introduced in ¹⁹ as the symmetry algebra of the vacuum excitations in (2+1) quantum gravity.
- Quantum Casimir invariants read

$$\begin{aligned} \mathcal{C}_{z} &= 4\cos(z\sqrt{\omega}) \left\{ \frac{\sinh^{2}(\frac{z}{2}P_{0})}{z^{2}} \cosh^{2}\left(\frac{z}{2}\sqrt{\omega}J\right) + \frac{\sinh^{2}(\frac{z}{2}\sqrt{\omega}J)}{z^{2}} \cosh^{2}\left(\frac{z}{2}P_{0}\right) \right\} \\ &- \frac{\sin(z\sqrt{\omega})}{z\sqrt{\omega}} \left(\mathbf{P}^{2} + \omega\mathbf{K}^{2}\right) \\ \mathcal{W}_{z} &= -\cos(z\sqrt{\omega}) \frac{\sinh(z\sqrt{\omega}J)}{z\sqrt{\omega}} \frac{\sinh(zP_{0})}{z} + \frac{\sin(z\sqrt{\omega})}{z\sqrt{\omega}} (K_{1}P_{2} - K_{2}P_{1}). \end{aligned}$$

- Note that in AdS_{ω} momenta do not commute.
- The AdS_w dispersion relation coming from C_z would also include the Lorentz sector.

¹⁹G. Amelino-Camelia, L. Smolin, A. Starodubtsev, Class.Quant.Grav. (2004) 3095.
Quantum κ -AdS $_{\omega}$ algebra in (2+1)

- This is exactly the quantum (A)dS algebra introduced in ¹⁹ as the symmetry algebra of the vacuum excitations in (2+1) quantum gravity.
- Quantum Casimir invariants read

$$\begin{split} \mathcal{C}_{z} &= 4\cos(z\sqrt{\omega}) \left\{ \frac{\sinh^{2}(\frac{z}{2}P_{0})}{z^{2}} \cosh^{2}\left(\frac{z}{2}\sqrt{\omega}J\right) + \frac{\sinh^{2}(\frac{z}{2}\sqrt{\omega}J)}{z^{2}} \cosh^{2}\left(\frac{z}{2}P_{0}\right) \right\} \\ &- \frac{\sin(z\sqrt{\omega})}{z\sqrt{\omega}} \left(\mathbf{P}^{2} + \omega\mathbf{K}^{2}\right) \\ \mathcal{W}_{z} &= -\cos(z\sqrt{\omega}) \frac{\sinh(z\sqrt{\omega}J)}{z\sqrt{\omega}} \frac{\sinh(zP_{0})}{z} + \frac{\sin(z\sqrt{\omega})}{z\sqrt{\omega}} (K_{1}P_{2} - K_{2}P_{1}). \end{split}$$

- Note that in AdS_{ω} momenta do not commute.
- The AdS_{ω} dispersion relation coming from C_z would also include the Lorentz sector.
- The coproduct (addition) of momenta involves rotation and boosts.

¹⁹G. Amelino-Camelia, L. Smolin, A. Starodubtsev, Class.Quant.Grav. (2004) 3095.

Adding the twist induced by the DD

The **twisted coproduct** $\Delta_{\vartheta,z}$ is obtained by twisting the κ -AdS $_{\omega}$ coproduct through an element $\mathcal{F}_{\vartheta} \in \kappa$ -AdS $_{\omega} \otimes \kappa$ -AdS $_{\omega}$:

$$\Delta_{artheta,z}(Y)=\mathcal{F}_{artheta}\Delta_z(Y)\mathcal{F}_{artheta}^{-1},\quad orall Y\in\kappa ext{-}\mathsf{AdS}_\omega,$$

where

 $\mathcal{F}_{\vartheta} = \exp(-\vartheta J \wedge P_0).$

²⁰A.B. , F.J. Herranz, C. Meusburger, P. Naranjo, SIGMA 10 (2014) 052

Adding the twist induced by the DD

The **twisted coproduct** $\Delta_{\vartheta,z}$ is obtained by twisting the κ -AdS $_{\omega}$ coproduct through an element $\mathcal{F}_{\vartheta} \in \kappa$ -AdS $_{\omega} \otimes \kappa$ -AdS $_{\omega}$:

$$\Delta_{artheta,z}(Y)=\mathcal{F}_{artheta}\Delta_z(Y)\mathcal{F}_{artheta}^{-1},\quad orall Y\in\kappa ext{-}\mathsf{AdS}_\omega,$$

where

$$\mathcal{F}_{\vartheta} = \exp(-\vartheta J \wedge P_0).$$

The twist \mathcal{F}_ϑ satisfies the so-called twisting co-cycle and normalisation conditions

 $\mathcal{F}_{\vartheta,12}(\Delta_z\otimes\mathrm{id})\mathcal{F}_\vartheta=\mathcal{F}_{\vartheta,23}(\mathrm{id}\otimes\Delta_z)\mathcal{F}_\vartheta\,,\qquad (\epsilon\otimes\mathrm{id})\mathcal{F}_\vartheta=1=(\mathrm{id}\otimes\epsilon)\mathcal{F}_\vartheta\,.$

²⁰A.B., F.J. Herranz, C. Meusburger, P. Naranjo, SIGMA 10 (2014) 052

Adding the twist induced by the DD

The **twisted coproduct** $\Delta_{\vartheta,z}$ is obtained by twisting the κ -AdS $_{\omega}$ coproduct through an element $\mathcal{F}_{\vartheta} \in \kappa$ -AdS $_{\omega} \otimes \kappa$ -AdS $_{\omega}$:

$$\Delta_{artheta,z}(Y)=\mathcal{F}_{artheta}\Delta_z(Y)\mathcal{F}_{artheta}^{-1},\quad orall Y\in\kappa ext{-}\mathsf{AdS}_\omega,$$

where

$$\mathcal{F}_{\vartheta} = \exp(-\vartheta J \wedge P_0).$$

The twist \mathcal{F}_ϑ satisfies the so-called twisting co-cycle and normalisation conditions

 $\mathcal{F}_{\vartheta,12}(\Delta_z\otimes\mathrm{id})\mathcal{F}_\vartheta=\mathcal{F}_{\vartheta,23}(\mathrm{id}\otimes\Delta_z)\mathcal{F}_\vartheta\,,\qquad (\epsilon\otimes\mathrm{id})\mathcal{F}_\vartheta=1=(\mathrm{id}\otimes\epsilon)\mathcal{F}_\vartheta\,.$

In this way we obtain (full expressions can be found in ²⁰):

²⁰A.B., F.J. Herranz, C. Meusburger, P. Naranjo, SIGMA 10 (2014) 052

Adding the twist induced by the DD

$$\begin{split} &\Delta_{\vartheta,z}(P_0) = 1 \otimes P_0 + P_0 \otimes 1, \qquad \Delta_{\vartheta,z}(J) = 1 \otimes J + J \otimes 1, \\ &\Delta_{\vartheta,z}(P_i) = \Delta_z(P_i) + e^{-\frac{Z}{2}P_0} \cosh(\frac{z}{2}\sqrt{\omega}J) \left[\cos(\vartheta\sqrt{\omega}J)\cos(\varthetaP_0) - 1\right] \otimes P_i \\ &+ e^{-\frac{Z}{2}P_0} \cosh(\frac{z}{2}\sqrt{\omega}J)\sin(\varthetaP_0)\cos(\vartheta\sqrt{\omega}J) \otimes \epsilon_{ij}P_j - \sqrt{\omega} e^{-\frac{Z}{2}P_0} \cosh(\frac{z}{2}\sqrt{\omega}J)\sin(\vartheta\sqrt{\omega}J)\cos(\varthetaP_0) \otimes K_i \\ &- \sqrt{\omega} e^{-\frac{Z}{2}P_0} \cosh(\frac{z}{2}\sqrt{\omega}J)\sin(\vartheta\sqrt{\omega}J)\sin(\varthetaP_0) \otimes \epsilon_{ij}K_j + P_i \otimes e^{\frac{Z}{2}P_0}\cosh(\frac{z}{2}\sqrt{\omega}J)\left[\cos(\vartheta\sqrt{\omega}J)\cos(\varthetaP_0) - 1\right] \\ &- \epsilon_{ij}P_j \otimes e^{\frac{Z}{2}P_0}\cosh(\frac{z}{2}\sqrt{\omega}J)\sin(\vartheta\sqrt{\omega}J)\sin(\varthetaP_0) \cos(\vartheta\sqrt{\omega}J) + \sqrt{\omega}K_i \otimes e^{\frac{Z}{2}P_0}\cosh(\frac{z}{2}\sqrt{\omega}J)\sin(\vartheta\sqrt{\omega}J)\cos(\varthetaP_0) \\ &- \sqrt{\omega} \epsilon_{ij}K_j \otimes e^{\frac{Z}{2}P_0}\cosh(\frac{z}{2}\sqrt{\omega}J)\sin(\vartheta\sqrt{\omega}J)\sin(\vartheta\Phi_0) - e^{-\frac{Z}{2}P_0}\sinh(\frac{z}{2}\sqrt{\omega}J)\sin(\vartheta\sqrt{\omega}J)\sin(\varthetaP_0) \otimes P_i \\ &+ e^{-\frac{Z}{2}P_0}\sinh(\frac{z}{2}\sqrt{\omega}J)\sin(\vartheta\sqrt{\omega}J)\cos(\varthetaP_0) \otimes \epsilon_{ij}P_j - \sqrt{\omega} e^{-\frac{Z}{2}P_0}\sinh(\frac{z}{2}\sqrt{\omega}J)\sin(\varthetaP_0)\cos(\vartheta\sqrt{\omega}J) \otimes K_i \\ &+ \sqrt{\omega} e^{-\frac{Z}{2}P_0}\sinh(\frac{z}{2}\sqrt{\omega}J)[\cos(\vartheta\sqrt{\omega}J)\cos(\varthetaP_0) - 1] \otimes \epsilon_{ij}K_j \\ &+ P_i \otimes e^{\frac{Z}{2}P_0}\sinh(\frac{z}{2}\sqrt{\omega}J)\sin(\vartheta\sqrt{\omega}J)\cos(\varthetaP_0) \\ &- \sqrt{\omega} K_i \otimes e^{\frac{Z}{2}P_0}\sinh(\frac{z}{2}\sqrt{\omega}J)\sin(\vartheta\sqrt{\omega}J)\cos(\varthetaP_0) \\ &- \sqrt{\omega} \kappa_i \otimes e^{\frac{Z}{2}P_0}\sinh(\frac{z}{2}\sqrt{\omega}J)\sin(\vartheta\sqrt{\omega}J)\cos(\varthetaP_0) - 1] . \end{split}$$

But commutation rules are left unchanged.

4. The Snyder-type deformation

First order deformation

The canonical classical r-matrix is

$$r' = \frac{\eta}{J_0} \wedge J_2 + \frac{1}{2} \left(-P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2 \right).$$

First order deformation

The canonical classical r-matrix is

$$r' = \frac{\eta}{J_0} \wedge J_2 + \frac{1}{2} \left(-P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2 \right).$$

Again, we will multiply r' by the quantum double deformation parameter z and

$$\begin{split} \delta_z(J_0) &= \eta z J_1 \wedge J_0, \qquad \delta_z(J_1) = 0, \qquad \delta_z(J_2) = \eta z J_1 \wedge J_2, \\ \delta_z(P_0) &= z \left(P_1 \wedge P_2 + \eta P_1 \wedge J_0 + \eta^2 J_2 \wedge J_1 \right), \\ \delta_z(P_1) &= z \left(P_0 \wedge P_2 + \eta P_0 \wedge J_0 - \eta P_2 \wedge J_2 + \eta^2 J_2 \wedge J_0 \right), \\ \delta_z(P_2) &= z \left(P_1 \wedge P_0 + \eta P_1 \wedge J_2 + \eta^2 J_0 \wedge J_1 \right), \end{split}$$

First order deformation

The canonical classical r-matrix is

$$r' = \frac{\eta}{J_0} \wedge J_2 + \frac{1}{2} \left(-P_0 \wedge J_0 + P_1 \wedge J_1 + P_2 \wedge J_2 \right).$$

Again, we will multiply r' by the quantum double deformation parameter z and

$$\begin{split} \delta_{z}(J_{0}) &= \eta z J_{1} \wedge J_{0}, \qquad \delta_{z}(J_{1}) = 0, \qquad \delta_{z}(J_{2}) = \eta z J_{1} \wedge J_{2} \\ \delta_{z}(P_{0}) &= z \left(P_{1} \wedge P_{2} + \eta P_{1} \wedge J_{0} + \eta^{2} J_{2} \wedge J_{1} \right), \\ \delta_{z}(P_{1}) &= z \left(P_{0} \wedge P_{2} + \eta P_{0} \wedge J_{0} - \eta P_{2} \wedge J_{2} + \eta^{2} J_{2} \wedge J_{0} \right), \\ \delta_{z}(P_{2}) &= z \left(P_{1} \wedge P_{0} + \eta P_{1} \wedge J_{2} + \eta^{2} J_{0} \wedge J_{1} \right), \end{split}$$

- The cosmological constant is $\Lambda = -\eta^2$.
- The $\eta \rightarrow 0$ limit gives a (simpler) twisted Poincaré algebra.

First order non-commutative space-time

In terms of the dual basis $(\hat{x}_a, \hat{\theta}_a)$ (a = 0, 1, 2), we find that the first-order dual Lie brackets among the spacetime coordinates are given by

 $[\hat{x}_0, \hat{x}_1] = -z\hat{x}_2, \qquad [\hat{x}_0, \hat{x}_2] = z\hat{x}_1, \qquad [\hat{x}_1, \hat{x}_2] = z\hat{x}_0.$

This is a noncommutative spacetime of Snyder type.

First order non-commutative space-time

In terms of the dual basis $(\hat{x}_a, \hat{\theta}_a)$ (a = 0, 1, 2), we find that the first-order dual Lie brackets among the spacetime coordinates are given by

 $[\hat{x}_0, \hat{x}_1] = -z\hat{x}_2,$ $[\hat{x}_0, \hat{x}_2] = z\hat{x}_1,$ $[\hat{x}_1, \hat{x}_2] = z\hat{x}_0.$

This is a noncommutative spacetime of Snyder type.

The remaining first-order non-commutative relations between the quantum spacetime and Lorentz parameters are

$$\begin{split} & [\hat{\theta}_{0}, \hat{\theta}_{1}] = -\eta z (\hat{\theta}_{0} - \eta \hat{x}_{2}), & [\hat{\theta}_{0}, \hat{\theta}_{2}] = -\eta^{2} z \hat{x}_{1}, & [\hat{\theta}_{1}, \hat{\theta}_{2}] = \eta z (\hat{\theta}_{2} - \eta \hat{x}_{0}), \\ & [\hat{\theta}_{0}, \hat{x}_{0}] = -\eta z \hat{x}_{1}, & [\hat{\theta}_{0}, \hat{x}_{1}] = -\eta z \hat{x}_{0}, & [\hat{\theta}_{0}, \hat{x}_{2}] = 0, \\ & [\hat{\theta}_{1}, \hat{x}_{0}] = 0, & [\hat{\theta}_{1}, \hat{x}_{1}] = 0, & [\hat{\theta}_{1}, \hat{x}_{2}] = 0, \\ & [\hat{\theta}_{2}, \hat{x}_{0}] = 0, & [\hat{\theta}_{2}, \hat{x}_{1}] = -\eta z \hat{x}_{2}, & [\hat{\theta}_{2}, \hat{x}_{2}] = \eta z \hat{x}_{1}. \end{split}$$

Note that in the Poincaré limit all these relations vanish.

All-orders Snyder nc spacetime deformation

From the Sklyanin bracket we get the PL brackets for the x_a coordinates ²¹

$$\{x_0, x_1\} = -z \frac{\tanh \eta x_2}{\eta} \Upsilon,$$

$$\{x_0, x_2\} = z \frac{\tanh \eta x_1}{\eta} \Upsilon,$$

$$\{x_1, x_2\} = z \frac{\tan \eta x_0}{\eta} \Upsilon,$$

$$\text{where} \qquad \Upsilon(x_0, x_1) = \cos \eta x_0 (\cos \eta x_0 \cosh \eta x_1 + \sinh \eta x_1).$$

²¹A.B., F.J. Herranz, C. Meusburger, Phys. Lett. B 732 (2014) 201

All-orders Snyder nc spacetime deformation

From the Sklyanin bracket we get the PL brackets for the x_a coordinates ²¹

$$\{x_0, x_1\} = -z \frac{\tanh \eta x_2}{\eta} \Upsilon,$$

$$\{x_0, x_2\} = z \frac{\tanh \eta x_1}{\eta} \Upsilon,$$

$$\{x_1, x_2\} = z \frac{\tan \eta x_0}{\eta} \Upsilon,$$

$$\{x_1, x_2\} = z \frac{\tan \eta x_0}{\eta} \Upsilon,$$

$$\text{where} \qquad \Upsilon(x_0, x_1) = \cos \eta x_0 (\cos \eta x_0 \cosh \eta x_1 + \sinh \eta x_1).$$

Therefore, we have a cosmological constant deformation of a 'Snyder' so(2,1) nc spacetime, whose quantization is by no means trivial:

$$\begin{aligned} \{x_0, x_1\} &= -z \, x_2 - \eta z \, x_1 x_2 + \eta^2 z \left(x_0^2 x_2 - \frac{1}{2} \, x_1^2 x_2 + \frac{1}{3} \, x_2^3 \right) + o[\eta^3], \\ \{x_0, x_2\} &= z \, x_1 + \eta z x_1^2 - \eta^2 z \left(x_0^2 x_1 - \frac{1}{6} \, x_1^3 \right) + o[\eta^3], \\ \{x_1, x_2\} &= z \, x_0 + \eta z x_0 x_1 - \eta^2 z \left(\frac{2}{3} \, x_0^3 - \frac{1}{2} \, x_1^2 x_0 \right) + o[\eta^3]. \end{aligned}$$

²¹A.B., F.J. Herranz, C. Meusburger, Phys. Lett. B 732 (2014) 201

5. Quantum ADS_{ω} in (3+1) dimensions

The AdS $_{\omega}$ algebra in (3+1)

The $(3+1)D AdS_{\omega}$ Lie algebra:

$$\begin{aligned} [J_a, J_b] &= \epsilon_{abc} J_c , \qquad [J_a, P_b] = \epsilon_{abc} P_c , \qquad [J_a, K_b] = \epsilon_{abc} K_c , \\ [K_a, P_0] &= P_a , \qquad [K_a, P_b] = \delta_{ab} P_0 , \qquad [K_a, K_b] = -\epsilon_{abc} J_c , \\ [P_0, P_a] &= \omega K_a , \qquad [P_a, P_b] = -\omega \epsilon_{abc} J_c , \qquad [P_0, J_a] = 0 . \end{aligned}$$

The AdS $_{\omega}$ algebra in (3+1)

The $(3+1)D AdS_{\omega}$ Lie algebra:

$$\begin{split} & [J_a, J_b] = \epsilon_{abc} J_c , \qquad [J_a, P_b] = \epsilon_{abc} P_c , \qquad [J_a, K_b] = \epsilon_{abc} K_c , \\ & [K_a, P_0] = P_a , \qquad [K_a, P_b] = \delta_{ab} P_0 , \qquad [K_a, K_b] = -\epsilon_{abc} J_c , \\ & [P_0, P_a] = \omega K_a , \qquad [P_a, P_b] = -\omega \epsilon_{abc} J_c , \qquad [P_0, J_a] = 0 . \end{split}$$

Explicilty, AdS^{3+1}_{ω} comprises the three following Lorentzian spacetimes:

- $\omega > 0, \Lambda < 0$: AdS spacetime $AdS^{3+1} \equiv SO(3,2)/SO(3,1)$.
- $\omega < 0, \Lambda > 0$: dS spacetime $dS^{3+1} \equiv SO(4, 1)/SO(3, 1)$.

•
$$\omega = \Lambda = 0$$
: Minkowski spacetime $M^{3+1} \equiv ISO(3,1)/SO(3,1)$.

The AdS $_{\omega}$ algebra in (3+1)

The $(3+1)D AdS_{\omega}$ Lie algebra:

$$\begin{aligned} & [J_a, J_b] = \epsilon_{abc} J_c , & [J_a, P_b] = \epsilon_{abc} P_c , & [J_a, K_b] = \epsilon_{abc} K_c , \\ & [K_a, P_0] = P_a , & [K_a, P_b] = \delta_{ab} P_0 , & [K_a, K_b] = -\epsilon_{abc} J_c , \\ & [P_0, P_a] = \omega K_a , & [P_a, P_b] = -\omega \epsilon_{abc} J_c , & [P_0, J_a] = 0 . \end{aligned}$$

Explicilty, $\mathbf{AdS}^{3+1}_{\omega}$ comprises the three following Lorentzian spacetimes:

- $\omega > 0, \Lambda < 0$: AdS spacetime $AdS^{3+1} \equiv SO(3,2)/SO(3,1)$.
- $\omega < 0, \Lambda > 0$: dS spacetime $dS^{3+1} \equiv SO(4, 1)/SO(3, 1)$.

•
$$\omega = \Lambda = 0$$
: Minkowski spacetime $M^{3+1} \equiv ISO(3,1)/SO(3,1)$.

Casimir operators:

$$\mathcal{C} = P_0^2 - \mathbf{P}^2 + \boldsymbol{\omega} \left(\mathbf{J}^2 - \mathbf{K}^2 \right)$$

$$\mathcal{W} = W_0^2 - \mathbf{W}^2 + \boldsymbol{\omega} \left(\mathbf{J} \cdot \mathbf{K} \right)^2$$
$$W_0 = \mathbf{J} \cdot \mathbf{P} \qquad W_a = -J_a P_0 + \epsilon_{abc} K_b P_c$$

A Drinfel'd double structure for $\mathfrak{so}(5)$

Classical Lie algebra c_2 generated by $\{h_a, e_{\pm a}\}$ (a = 1, 2):

$[h_1, e_{\pm 1}] = \pm e_{\pm 1},$	$[h_1, e_{\pm 2}] = \mp e_{\pm 2},$	$[e_{+1}, e_{-1}] = h_1 ,$
$[h_2, e_{\pm 1}] = \mp e_{\pm 1},$	$[h_2, e_{\pm 2}] = \pm 2e_{\pm 2},$	$[e_{+2}, e_{-2}] = h_2,$
$[h_1, h_2] = 0,$	$[e_{-1},e_{+2}]=0,$	$[e_{+1}, e_{-2}] = 0$.
$[e_{+1}, e_{+2}] :=$	e_{+3} , $[e_{-2}]$	$[, e_{-1}] := e_{-3},$
$[e_{+1}, e_{+3}] :=$	e_{+4} , $[e_{-3}]$	$[, e_{-1}] := e_{-4}$.

<u>A Drinfel</u>'d double structure for $\mathfrak{so}(5)$

Classical Lie algebra c_2 generated by $\{h_a, e_{\pm a}\}$ (a = 1, 2):

$[h_1, e_{\pm 1}] = \pm e_{\pm 1} ,$	$[h_1, e_{\pm 2}] = \mp e$	₽±2,	$[e_{+1}, e_{-1}] = h_1,$
$[h_2,e_{\pm 1}]=\mp e_{\pm 1},$	$[h_2,e_{\pm 2}]=\pm 2$	$2e_{\pm 2}$,	$[e_{+2},e_{-2}]=h_2,$
$[h_1, h_2] = 0,$	$[e_{-1}, e_{+2}] = 0$,		$[e_{+1}, e_{-2}] = 0$.
$[e_{+1},e_{+2}]:=\epsilon$	2+3,	$[e_{-2}, e_{-1}]$	$:= e_{-3},$
$[e_{+1},e_{+3}]:=\epsilon$	2+4 ,	$[e_{-3}, e_{-1}]$	$:= e_{-4}$.

• The generators $\{h_a, e_{\pm b}\}$ $(a = 1, 2; b = 1, \dots, 4)$ span $\mathfrak{so}(5)$ $e_0 = -\frac{1}{\sqrt{2}} (J_{04} - i J_{13}),$ $f_0 = \frac{1}{\sqrt{2}} (J_{04} + i J_{13}),$ $f_1 = -\frac{1}{\sqrt{2}} (J_{23} - i J_{12}),$ $e_1 = \frac{1}{\sqrt{2}} (J_{23} + i J_{12}),$ $\mathbf{e}_2 = \frac{1}{2} (J_{01} - J_{34} - \mathrm{i}(J_{03} + J_{14})), \quad f_2 = -\frac{1}{2} (J_{01} - J_{34} + \mathrm{i}(J_{03} + J_{14})),$ $f_3 = -\frac{1}{\sqrt{2}} (J_{24} - i J_{02}),$ $e_3 = \frac{1}{\sqrt{2}} (J_{24} + i J_{02}),$

$$e_4 = \frac{1}{2} (J_{01} + J_{34} + i(J_{03} - J_{14})), \quad f_4 = -\frac{1}{2} (J_{01} + J_{34} - i(J_{03} - J_{14})).$$

A Drinfel'd double structure for $\mathfrak{so}(5)$

Classical Lie algebra c_2 generated by $\{h_a, e_{\pm a}\}$ (a = 1, 2):

$[h_1, e_{\pm 1}] = \pm e_{\pm 1} ,$	$[h_1, e_{\pm 2}] = \mp e$	$e_{\pm 2}$,	$[e_{+1}, e_{-1}] = h_1 ,$
$[h_2, e_{\pm 1}] = \mp e_{\pm 1} ,$	$[h_2,e_{\pm 2}]=\pm 2$	$2e_{\pm 2}$,	$[e_{+2},e_{-2}]=h_2,$
$[h_1, h_2] = 0,$	$[e_{-1}, e_{+2}] = 0$,		$[e_{+1}, e_{-2}] = 0$.
$[e_{+1},e_{+2}]:=\epsilon$	+3,	$[e_{-2}, e_{-1}]$	$:= e_{-3},$
$[e_{+1},e_{+3}]:=e$	+4 ,	$[e_{-3}, e_{-1}]$	$:= e_{-4}$.

• The generators $\{h_a, e_{\pm b}\}$ $(a = 1, 2; b = 1, \dots, 4)$ span $\mathfrak{so}(5)$ $e_0 = -\frac{1}{2}(J_{04} - iJ_{13}), \qquad f_0 = \frac{1}{2}(J_{04} + iJ_{13}),$

$$\begin{aligned} e_{1} &= \frac{1}{\sqrt{2}} \left(J_{23} + i J_{12} \right), & f_{1} &= -\frac{1}{\sqrt{2}} \left(J_{23} - i J_{12} \right), \\ e_{2} &= \frac{1}{2} \left(J_{01} - J_{34} - i (J_{03} + J_{14}) \right), & f_{2} &= -\frac{1}{2} \left(J_{01} - J_{34} + i (J_{03} + J_{14}) \right), \\ e_{3} &= \frac{1}{\sqrt{2}} \left(J_{24} + i J_{02} \right), & f_{3} &= -\frac{1}{\sqrt{2}} \left(J_{24} - i J_{02} \right), \\ e_{4} &= \frac{1}{2} \left(J_{01} + J_{34} + i (J_{03} - J_{14}) \right), & f_{4} &= -\frac{1}{2} \left(J_{01} + J_{34} - i (J_{03} - J_{14}) \right). \end{aligned}$$

• Let us consider $f_b \equiv e_{-b}$ ($b = 1, \ldots, 4$) and

$$\mathbf{e}_0 := \frac{1}{\sqrt{2}} ((1 + \mathrm{i})h_1 + \mathrm{i}h_2), \qquad f_0 := \frac{1}{\sqrt{2}} ((1 - \mathrm{i})h_1 - \mathrm{i}h_2).$$

A Drinfel'd double structure for $\mathfrak{so}(5)$

We take the two Borel subalgebras as the DD subalgebras:

$$X_i \equiv e_{+i}$$
 $x^i \equiv f_i \equiv e_{-i}$, $i = 0, \dots, 4$.

A Drinfel'd double structure for $\mathfrak{so}(5)$

We take the two Borel subalgebras as the DD subalgebras:

$$X_i \equiv e_{+i}$$
 $x^i \equiv f_i \equiv e_{-i}$, $i = 0, \ldots, 4$.

Therefore, $\mathfrak{so}(5)$ is endowed with the following DD structure:

Canonical pairing

$$\langle e_i, e_j \rangle = 0$$
, $\langle f_i, f_j \rangle = 0$, $\langle f_i, e_j \rangle = \delta_{ij}$, $\forall i, j$.

Casimir element

$$C = rac{1}{2} \sum_{i} \left(x^{i} X_{i} + X_{i} x^{i}
ight) = rac{1}{2} \sum_{i=0}^{4} \left(f_{i} e_{i} + e_{i} f_{i}
ight).$$

• Canonical DD classical r-matrix

$$r = \sum_i x^i \otimes X_i = \sum_{i=0}^4 f_i \otimes e_i , \quad r_{\rm skew} = \frac{1}{2} \sum_i x^i \wedge X_i = \frac{1}{2} \sum_{i=0}^4 f_i \wedge e_i .$$

The DD structure for AdS_{ω}

• Change of basis

$$\begin{split} P_1 &= \mathrm{i}\sqrt{\omega} \; J_{01} \,, \quad P_2 &= \mathrm{i}\sqrt{\omega} \; J_{02} \,, \quad P_3 &= \mathrm{i}\sqrt{\omega} \; J_{03} \,, \quad P_0 &= -\sqrt{\omega} \; J_{04} \,, \\ K_1 &= \mathrm{i}J_{14} \,, \qquad K_2 &= \mathrm{i}J_{24} \,, \qquad K_3 &= \mathrm{i}J_{34} \,, \\ J_1 &= J_{23} \,, \qquad J_2 &= -J_{13} \,, \qquad J_3 &= J_{12} \,. \end{split}$$

The DD structure for AdS_{ω}

• Change of basis

$$\begin{split} P_1 &= \mathrm{i}\sqrt{\omega} \; J_{01} \;, \quad P_2 &= \mathrm{i}\sqrt{\omega} \; J_{02} \;, \quad P_3 &= \mathrm{i}\sqrt{\omega} \; J_{03} \;, \quad P_0 &= -\sqrt{\omega} \; J_{04} \;, \\ K_1 &= \mathrm{i}J_{14} \;, \qquad K_2 &= \mathrm{i}J_{24} \;, \qquad K_3 &= \mathrm{i}J_{34} \;, \\ J_1 &= J_{23} \;, \qquad J_2 &= -J_{13} \;, \qquad J_3 &= J_{12} \;. \end{split}$$

• Pairing and Casimir operator:

$$\begin{split} P_{0}, P_{0}\rangle_{\omega} &= -\omega, \ \langle P_{a}, P_{b}\rangle_{\omega} = \omega \,\delta_{ab}, \ \langle K_{a}, K_{b}\rangle_{\omega} = \delta_{ab}, \ \langle J_{a}, J_{b}\rangle_{\omega} = -\delta_{ab}, \\ C_{\omega} &= \omega \, C = \frac{1}{2} \Big(\sum_{a=1}^{3} P_{a}^{2} - P_{0}^{2} + \omega \sum_{a=1}^{3} \Big(K_{a}^{2} - J_{a}^{2} \Big) \Big) \end{split}$$

The DD structure for AdS_{ω}

• Change of basis

$$\begin{split} P_1 &= \mathrm{i}\sqrt{\omega} \; J_{01} \;, \quad P_2 &= \mathrm{i}\sqrt{\omega} \; J_{02} \;, \quad P_3 &= \mathrm{i}\sqrt{\omega} \; J_{03} \;, \quad P_0 &= -\sqrt{\omega} \; J_{04} \;, \\ K_1 &= \mathrm{i}J_{14} \;, \qquad K_2 &= \mathrm{i}J_{24} \;, \qquad K_3 &= \mathrm{i}J_{34} \;, \\ J_1 &= J_{23} \;, \qquad J_2 &= -J_{13} \;, \qquad J_3 &= J_{12} \;. \end{split}$$

• Pairing and Casimir operator:

The DD classical *r*-matrices in (2+1) and (3+1)

$$r_{\omega} \equiv \sqrt{\omega} r_{J} = z(\underbrace{K_{1} \wedge P_{1} + K_{2} \wedge P_{2} + K_{3} \wedge P_{3} + \sqrt{\omega} J_{3} \wedge J_{1}}_{\kappa - \text{AdS}_{\omega}} + \underbrace{P_{0} \wedge J_{2}}_{\text{twist}})$$
$$r_{2+1} = z(\underbrace{K_{1} \wedge P_{1} + K_{2} \wedge P_{2}}_{\kappa - \text{AdS}_{\omega}}) + \underbrace{\theta J \wedge P_{0}}_{\text{twist}}.$$

A DD quantum AdS_{ω} deformation

Cocommutator map in (3+1)

$$\begin{split} \delta(P_0) &= 0, \qquad \delta(J_2) = 0, \\ \delta(J_1) &= z \left(P_0 \wedge J_3 + \sqrt{\omega} J_1 \wedge J_2 \right), \qquad \delta(J_3) = z \left(J_1 \wedge P_0 + \sqrt{\omega} J_3 \wedge J_2 \right), \\ \delta(P_1) &= z \left((P_1 - P_3) \wedge P_0 + \omega \left(J_2 \wedge (K_1 - K_3) + J_3 \wedge K_2 \right) + \sqrt{\omega} J_1 \wedge P_2 \right), \\ \delta(P_2) &= z \left(P_2 \wedge P_0 + \omega \left(J_1 \wedge K_3 + J_2 \wedge K_2 + K_1 \wedge J_3 \right) + \sqrt{\omega} (P_1 \wedge J_1 + P_3 \wedge J_3) \right), \\ \delta(P_3) &= z \left((P_1 + P_3) \wedge P_0 + \omega \left(J_2 \wedge (K_1 + K_3) + K_2 \wedge J_1 \right) + \sqrt{\omega} J_3 \wedge P_2 \right), \\ \delta(K_1) &= z \left((K_1 - K_3) \wedge P_0 + (P_1 - P_3) \wedge J_2 + P_2 \wedge J_3 + \sqrt{\omega} J_1 \wedge K_2 \right), \\ \delta(K_2) &= z \left(K_2 \wedge P_0 + J_3 \wedge P_1 + P_2 \wedge J_2 + P_3 \wedge J_1 + \sqrt{\omega} (K_1 \wedge J_1 + K_3 \wedge J_3) \right), \\ \delta(K_3) &= z \left((K_1 + K_3) \wedge P_0 + (P_1 + P_3) \wedge J_2 + J_1 \wedge P_2 + \sqrt{\omega} J_3 \wedge K_2 \right). \end{split}$$

Note the strong effect of ω in the addition law for momenta. The rotation subalgebra is also influenced by the twist.

First-order noncommutative spacetime

First-order Poisson–Lie brackets defined by the 4-dimensional spacetime PL subalgebra:

$$\{x^{1}, x^{0}\} = z (x^{1} + x^{3})$$

$$\{x^{2}, x^{0}\} = z x^{2},$$

$$\{x^{3}, x^{0}\} = z (x^{3} - x^{1}),$$

$$\{x^{a}, x^{b}\} = 0, \qquad a, b = 1, 2, 3$$

.

First–order noncommutative spacetime

First-order Poisson–Lie brackets defined by the 4-dimensional spacetime PL subalgebra:

$$\{x^{1}, x^{0}\} = z (x^{1} + x^{3})$$

$$\{x^{2}, x^{0}\} = z x^{2},$$

$$\{x^{3}, x^{0}\} = z (x^{3} - x^{1}),$$

$$\{x^{a}, x^{b}\} = 0, \qquad a, b = 1, 2, 3$$

This is nonisomorphic to $(3+1) \ \kappa$ -Minkowski spacetime. The x^2 coordinate is distinguished.

Restoring space isotropy

Space isotropy can be manifestly recovered in this DD quantum deformation by considering the following automorphism of the AdS_{ω} algebra: ²²

$$\begin{split} \widetilde{Y}_{1} &= \frac{1}{\sqrt{6}} \, Y_{1} + \frac{1}{\sqrt{3}} \, Y_{2} + \frac{1}{\sqrt{2}} \, Y_{3}, & Y_{1} &= \frac{1}{\sqrt{6}} \left(\widetilde{Y}_{1} + \widetilde{Y}_{2} - 2 \widetilde{Y}_{3} \right), \\ \widetilde{Y}_{2} &= \frac{1}{\sqrt{6}} \, Y_{1} + \frac{1}{\sqrt{3}} \, Y_{2} - \frac{1}{\sqrt{2}} \, Y_{3}, & Y_{2} &= \frac{1}{\sqrt{3}} \left(\widetilde{Y}_{1} + \widetilde{Y}_{2} + \widetilde{Y}_{3} \right), \\ \widetilde{Y}_{3} &= -\frac{2}{\sqrt{6}} \, Y_{1} + \frac{1}{\sqrt{3}} \, Y_{2}, & Y_{3} &= \frac{1}{\sqrt{2}} \left(\widetilde{Y}_{1} - \widetilde{Y}_{2} \right), \\ \text{for} \quad \mathbf{Y} \in \{ \mathbf{P}, \mathbf{K}, \mathbf{J} \}, & \widetilde{P}_{0} &= P_{0}. \end{split}$$

²²A.B., F.J. Herranz, P. Naranjo, Phys. Lett. B 746 (2015) 37

Restoring space isotropy

Space isotropy can be manifestly recovered in this DD quantum deformation by considering the following automorphism of the AdS_{ω} algebra: ²²

$$\begin{split} \widetilde{Y}_{1} &= \frac{1}{\sqrt{6}} Y_{1} + \frac{1}{\sqrt{3}} Y_{2} + \frac{1}{\sqrt{2}} Y_{3}, \qquad Y_{1} = \frac{1}{\sqrt{6}} \left(\widetilde{Y}_{1} + \widetilde{Y}_{2} - 2\widetilde{Y}_{3} \right), \\ \widetilde{Y}_{2} &= \frac{1}{\sqrt{6}} Y_{1} + \frac{1}{\sqrt{3}} Y_{2} - \frac{1}{\sqrt{2}} Y_{3}, \qquad Y_{2} = \frac{1}{\sqrt{3}} \left(\widetilde{Y}_{1} + \widetilde{Y}_{2} + \widetilde{Y}_{3} \right), \\ \widetilde{Y}_{3} &= -\frac{2}{\sqrt{6}} Y_{1} + \frac{1}{\sqrt{3}} Y_{2}, \qquad Y_{3} = \frac{1}{\sqrt{2}} \left(\widetilde{Y}_{1} - \widetilde{Y}_{2} \right), \\ \text{for} \quad \mathbf{Y} \in \{\mathbf{P}, \mathbf{K}, \mathbf{J}\}, \qquad \widetilde{P}_{0} = P_{0}. \end{split}$$

In this way, the classical *r*-matrix is transformed into

$$egin{aligned} ilde{r}_{\omega} &= z \left(ilde{K}_1 \wedge ilde{P}_1 + ilde{K}_2 \wedge ilde{P}_2 + ilde{K}_3 \wedge ilde{P}_3 + rac{1}{\sqrt{3}} \, ilde{P}_0 \wedge ig(ilde{J}_1 + ilde{J}_2 + ilde{J}_3 ig) \ &+ rac{\sqrt{\omega}}{\sqrt{3}} \, ig(ilde{J}_1 \wedge ilde{J}_2 + ilde{J}_2 \wedge ilde{J}_3 + ilde{J}_3 \wedge ilde{J}_1 ig) ig) \end{aligned}$$

²²A.B., F.J. Herranz, P. Naranjo, Phys. Lett. B 746 (2015) 37

Restoring space isotropy

The **first-order noncommutative spacetime** spanned by the dual coordinates of the spacetime subalgebra reads

$$\{x^{a}, x^{0}\} = z \left(x^{a} + \frac{1}{\sqrt{3}} (x^{a+2} - x^{a+1}) \right)$$
$$\{x^{a}, x^{b}\} = 0 \quad a, b = 1, 2, 3.$$

Full quantum twisted AdS_{ω} algebra

Instead of considering

$$r = z \left(K_1 \wedge P_1 + K_2 \wedge P_2 + K_3 \wedge P_3 + \sqrt{\omega} J_3 \wedge J_1 \right) + P_0 \wedge J_2,$$

we take the equivalent AdS_ω deformation generated by

 $r_{z,\vartheta} = z \left(K_1 \wedge P_1 + K_2 \wedge P_2 + K_3 \wedge P_3 + \sqrt{\omega} J_1 \wedge J_2 \right) + \vartheta J_3 \wedge P_0.$

 ²³A.B., F. Musso, J. Phys. A: Math. Theor 46 (2013) 195203
 ²⁴A.B., F.J. Herranz, F. Musso, P. Naranjo, preprint (2015)

Full quantum twisted AdS_{ω} algebra

Instead of considering

$$r = z \left(K_1 \wedge P_1 + K_2 \wedge P_2 + K_3 \wedge P_3 + \sqrt{\omega} J_3 \wedge J_1 \right) + P_0 \wedge J_2,$$

we take the equivalent AdS_{ω} deformation generated by

$$r_{z,\vartheta} = z \left(K_1 \wedge P_1 + K_2 \wedge P_2 + K_3 \wedge P_3 + \sqrt{\omega} J_1 \wedge J_2 \right) + \vartheta J_3 \wedge P_0.$$

The Poisson analogue of the corresponding all-orders quantum algebra can be explicitly computed by following the dual Poisson–Lie group approach based in the quantum duality principle and presented in ²³.

We end up with the following coproduct in a 'bicrossproduct' basis: ²⁴

$$\begin{split} \Delta(P_0) &= P_0 \otimes 1 + 1 \otimes P_0, \qquad \Delta(J_3) = J_3 \otimes 1 + 1 \otimes J_3, \\ \Delta(J_1) &= J_1 \otimes e^{z\sqrt{\omega}J_3} + \cos(\vartheta P_0) \otimes J_1 + \sin(\vartheta P_0) \otimes J_2, \\ \Delta(J_2) &= J_2 \otimes e^{z\sqrt{\omega}J_3} + \cos(\vartheta P_0) \otimes J_2 - \sin(\vartheta P_0) \otimes J_1, \end{split}$$

²³A.B., F. Musso, J. Phys. A: Math. Theor 46 (2013) 195203
 ²⁴A.B., F.J. Herranz, F. Musso, P. Naranjo, preprint (2015)

Nonlinear composition of momenta

$$\begin{split} \Delta(P_1) &= P_1 \otimes \cosh(z\sqrt{\omega}J_3) \cos(\vartheta\sqrt{\omega}J_3) + e^{-zP_0} \cos(\vartheta P_0) \otimes P_1 \\ &+ P_2 \otimes \sinh(z\sqrt{\omega}J_3) \sin(\vartheta\sqrt{\omega}J_3) + e^{-zP_0} \sin(\vartheta P_0) \otimes P_2 \\ &- \sqrt{\omega}K_2 \otimes \sinh(z\sqrt{\omega}J_3) \cos(\vartheta\sqrt{\omega}J_3) + \sqrt{\omega}K_1 \otimes \cosh(z\sqrt{\omega}J_3) \sin(\vartheta\sqrt{\omega}J_3) \\ &- z\sqrt{\omega} \left[(P_3 \otimes J_1 - \sqrt{\omega}K_3 \otimes J_2)C_{\vartheta}(P_0, J_3) + (P_3 \otimes J_2 + \sqrt{\omega}K_3 \otimes J_1)S_{\vartheta}(P_0, J_3) \right] \\ &+ \frac{z^2\omega}{2} \left[2(\sqrt{\omega}K_1 - P_2) \otimes J_1J_2e^{-z\sqrt{\omega}J_3} - (\sqrt{\omega}K_2 + P_1) \otimes (J_1^2 - J_2^2)e^{-z\sqrt{\omega}J_3} \right] \tilde{C}_{\vartheta}(P_0, J_3) \\ &- \frac{z^2\omega}{2} \left[2(\sqrt{\omega}K_2 + P_1) \otimes J_1J_2e^{-z\sqrt{\omega}J_3} + (\sqrt{\omega}K_1 - P_2) \otimes (J_1^2 - J_2^2)e^{-z\sqrt{\omega}J_3} \right] \tilde{S}_{\vartheta}(P_0, J_3), \\ \Delta(P_2) &= P_2 \otimes \cosh(z\sqrt{\omega}J_3) \cos(\vartheta\sqrt{\omega}J_3) + e^{-zP_0} \cos(\vartheta P_0) \otimes P_2 \\ &- P_1 \otimes \sinh(z\sqrt{\omega}J_3) \sin(\vartheta\sqrt{\omega}J_3) - e^{-zP_0} \sin(\vartheta P_0) \otimes P_1 \\ &+ \sqrt{\omega}K_1 \otimes \sinh(z\sqrt{\omega}J_3) \cos(\vartheta\sqrt{\omega}J_3) + \sqrt{\omega}K_2 \otimes \cosh(z\sqrt{\omega}J_3) \sin(\vartheta\sqrt{\omega}J_3) \\ &- z\sqrt{\omega} \left[(P_3 \otimes J_2 + \sqrt{\omega}K_3 \otimes J_1)C_{\vartheta}(P_0, J_3) - (P_3 \otimes J_1 - \sqrt{\omega}K_3 \otimes J_2)S_{\vartheta}(P_0, J_3) \right] \\ &- \frac{z^2\omega}{2} \left[2(\sqrt{\omega}K_1 - P_2) \otimes J_1J_2e^{-z\sqrt{\omega}J_3} + (\sqrt{\omega}K_1 - P_2) \otimes (J_1^2 - J_2^2)e^{-z\sqrt{\omega}J_3} \right] \tilde{C}_{\vartheta}(P_0, J_3) \\ &- \frac{z^2\omega}{2} \left[2(\sqrt{\omega}K_1 - P_2) \otimes J_1J_2e^{-z\sqrt{\omega}J_3} - (\sqrt{\omega}K_2 + P_1) \otimes (J_1^2 - J_2^2)e^{-z\sqrt{\omega}J_3} \right] \tilde{C}_{\vartheta}(P_0, J_3), \\ \Delta(P_3) &= e^{-zP_0} \otimes P_3 + P_3 \otimes \cos(\vartheta\sqrt{\omega}J_3) + \sqrt{\omega}K_3 \otimes \sin(\vartheta\sqrt{\omega}J_3) \\ &+ z\sqrt{\omega} \left[(\sqrt{\omega}K_2 + P_1) \otimes J_1e^{-z\sqrt{\omega}J_3} - (\sqrt{\omega}K_1 - P_2) \otimes J_2e^{-z\sqrt{\omega}J_3} \right] C_{\vartheta}(P_0, J_3), \\ + z\sqrt{\omega} \left[(\sqrt{\omega}K_2 + P_1) \otimes J_2e^{-z\sqrt{\omega}J_3} + (\sqrt{\omega}K_1 - P_2) \otimes J_2e^{-z\sqrt{\omega}J_3} \right] S_{\vartheta}(P_0, J_3), \\ + z\sqrt{\omega} \left[(\sqrt{\omega}K_2 + P_1) \otimes J_2e^{-z\sqrt{\omega}J_3} + (\sqrt{\omega}K_1 - P_2) \otimes J_2e^{-z\sqrt{\omega}J_3} \right] S_{\vartheta}(P_0, J_3), \\ \end{array}$$

44 / 53

Quantum commutation rules

$$\{J_1, J_2\} = \frac{e^{2z\sqrt{\omega}J_3} - 1}{2z\sqrt{\omega}} - \frac{z\sqrt{\omega}}{2} \left(J_1^2 + J_2^2\right), \qquad \{J_1, J_3\} = -J_2, \qquad \{J_2, J_3\} = J_1,$$

$$\begin{cases} J_1, P_1 \} = z\sqrt{\omega}J_1P_2, & \{J_1, P_2\} = P_3 - z\sqrt{\omega}J_1P_1, & \{J_1, P_3\} = -P_2, \\ \{J_2, P_1\} = -P_3 + z\sqrt{\omega}J_2P_2, & \{J_2, P_2\} = -z\sqrt{\omega}J_2P_1, & \{J_2, P_3\} = P_1, \\ \{J_3, P_1\} = P_2, & \{J_3, P_2\} = -P_1, & \{J_3, P_3\} = 0, \\ \{J_1, K_1\} = z\sqrt{\omega}J_1K_2, & \{J_1, K_2\} = K_3 - z\sqrt{\omega}J_1K_1, & \{J_1, K_3\} = -K_2, \\ \{J_2, K_1\} = -K_3 + z\sqrt{\omega}J_2K_2, & \{J_2, K_2\} = -z\sqrt{\omega}J_2K_1, & \{J_2, K_3\} = K_1, \\ \{J_3, K_1\} = K_2, & \{J_3, K_2\} = -K_1, & \{J_3, K_3\} = 0, \\ \{K_a, P_0\} = P_a, & \{P_0, P_a\} = \omega K_a, & \{P_0, J_a\} = 0, \end{cases}$$

Quantum commutation rules

$$\begin{split} \{ \mathcal{K}_{1}, \mathcal{P}_{1} \} &= \frac{1}{2z} \left(\cosh(2z\sqrt{\omega}J_{3}) - e^{-2z\mathcal{P}_{0}} \right) + \frac{z^{3}\omega^{2}}{4} e^{-2z\sqrt{\omega}J_{3}} \left(J_{1}^{2} + J_{2}^{2} \right)^{2} + \frac{z}{2} \left(\mathcal{P}_{2}^{2} + \mathcal{P}_{3}^{2} - \mathcal{P}_{1}^{2} \right) \\ &\quad + \frac{z\omega}{2} \left[\mathcal{K}_{2}^{2} + \mathcal{K}_{3}^{2} - \mathcal{K}_{1}^{2} + J_{1}^{2} \left(1 - e^{-2z\sqrt{\omega}J_{3}} \right) + J_{2}^{2} \left(1 + e^{-2z\sqrt{\omega}J_{3}} \right) \right] , \\ \{ \mathcal{K}_{2}, \mathcal{P}_{2} \} &= \frac{1}{2z} \left(\cosh(2z\sqrt{\omega}J_{3}) - e^{-2z\mathcal{P}_{0}} \right) + \frac{z^{3}\omega^{2}}{4} e^{-2z\sqrt{\omega}J_{3}} \left(J_{1}^{2} + J_{2}^{2} \right)^{2} - \frac{z}{2} \left(\mathcal{P}_{1}^{2} + \mathcal{P}_{3}^{2} - \mathcal{P}_{2}^{2} \right) \\ &\quad + \frac{z\omega}{2} \left[\mathcal{K}_{1}^{2} + \mathcal{K}_{3}^{2} - \mathcal{K}_{2}^{2} + J_{1}^{2} \left(1 + e^{-2z\sqrt{\omega}J_{3}} \right) + J_{2}^{2} \left(1 - e^{-2z\sqrt{\omega}J_{3}} \right) \right] , \\ \{ \mathcal{K}_{3}, \mathcal{P}_{3} \} &= \frac{1 - e^{-2z\mathcal{P}_{0}}}{2z} + \frac{z}{2} \left[\left(\mathcal{P}_{1} + \sqrt{\omega}\mathcal{K}_{2} \right)^{2} + \left(\mathcal{P}_{2} - \sqrt{\omega}\mathcal{K}_{1} \right)^{2} - \mathcal{P}_{3}^{2} - \omega\mathcal{K}_{3}^{2} \right] \\ &\quad + z\omega e^{-2z\sqrt{\omega}J_{3}} \left(J_{1}^{2} + J_{2}^{2} \right) , \\ \{ \mathcal{P}_{1}, \mathcal{K}_{2} \} &= z \left(\mathcal{P}_{1}\mathcal{P}_{2} + \omega\mathcal{K}_{1}\mathcal{K}_{2} - \sqrt{\omega}\mathcal{P}_{3}\mathcal{K}_{3} + \omega\mathcal{J}_{1}\mathcal{J}_{2}e^{-2z\sqrt{\omega}\mathcal{J}_{3}} \right) , \\ \{ \mathcal{P}_{2}, \mathcal{K}_{1} \} &= z \left(\mathcal{P}_{1}\mathcal{P}_{2} + \omega\mathcal{K}_{1}\mathcal{K}_{2} + \sqrt{\omega}\mathcal{P}_{3}\mathcal{K}_{3} + \omega\mathcal{J}_{1}\mathcal{J}_{2}e^{-2z\sqrt{\omega}\mathcal{J}_{3}} \right) , \\ \{ \mathcal{P}_{3}, \mathcal{K}_{1} \} &= \frac{1}{2}\sqrt{\omega}\mathcal{J}_{1} \left(1 - e^{-2z\sqrt{\omega}\mathcal{J}_{3}} \left[1 - z^{2}\omega \left(\mathcal{J}_{1}^{2} + \mathcal{J}_{2}^{2} \right) \right] \right) + z \left(\mathcal{P}_{1}\mathcal{P}_{3} + \omega\mathcal{K}_{1}\mathcal{K}_{3} - \sqrt{\omega}\mathcal{P}_{2}\mathcal{K}_{3} \right) , \\ \{ \mathcal{P}_{2}, \mathcal{K}_{3} \} &= \frac{1}{2}\sqrt{\omega}\mathcal{J}_{2} \left(1 - e^{-2z\sqrt{\omega}\mathcal{J}_{3}} \left[1 - z^{2}\omega \left(\mathcal{J}_{1}^{2} + \mathcal{J}_{2}^{2} \right) \right] \right) + z \left(\mathcal{P}_{2}\mathcal{P}_{3} + \omega\mathcal{K}_{2}\mathcal{K}_{3} - \sqrt{\omega}\mathcal{K}_{1}\mathcal{R}_{3} \right) , \\ \{ \mathcal{P}_{3}, \mathcal{K}_{2} \} &= \frac{1}{2}\sqrt{\omega}\mathcal{J}_{2} \left(1 - e^{-2z\sqrt{\omega}\mathcal{J}_{3}} \left[1 - z^{2}\omega \left(\mathcal{J}_{1}^{2} + \mathcal{J}_{2}^{2} \right) \right] \right) + z \left(\mathcal{P}_{2}\mathcal{P}_{3} + \omega\mathcal{K}_{2}\mathcal{K}_{3} + \sqrt{\omega}\mathcal{K}_{1}\mathcal{K}_{3} \right) , \end{aligned}$$
Quantum commutation rules

$$\{ K_1, K_2 \} = -\frac{\sinh(2z\sqrt{\omega}J_3)}{2z\sqrt{\omega}} - \frac{z\sqrt{\omega}}{2} \left(J_1^2 + J_2^2 + 2K_3^2 \right) - \frac{z^3\omega^{3/2}}{4} e^{-2z\sqrt{\omega}J_3} \left(J_1^2 + J_2^2 \right)^2$$

$$\{ K_1, K_3 \} = \frac{1}{2} J_2 \left(1 + e^{-2z\sqrt{\omega}J_3} \left[1 + z^2\omega \left(J_1^2 + J_2^2 \right) \right] \right) + z\sqrt{\omega}K_2K_3$$

$$\{ K_2, K_3 \} = -\frac{1}{2} J_1 \left(1 + e^{-2z\sqrt{\omega}J_3} \left[1 + z^2\omega \left(J_1^2 + J_2^2 \right) \right] \right) - z\sqrt{\omega}K_1K_3$$

$$\{P_1, P_2\} = -\omega \frac{\sinh(2z\sqrt{\omega}J_3)}{2z\sqrt{\omega}} - \frac{z\sqrt{\omega}}{2} \left(2P_3^2 + \omega(J_1^2 + J_2^2)\right) - \frac{z^3\omega^{5/2}}{4}e^{-2z\sqrt{\omega}J_3} \left(J_1^2 + J_2^2\right)^2$$

$$\{P_1, P_3\} = \frac{1}{2}\omega J_2 \left(1 + e^{-2z\sqrt{\omega}J_3} \left[1 + z^2\omega \left(J_1^2 + J_2^2\right)\right]\right) + z\sqrt{\omega}P_2P_3$$

$$\{P_2, P_3\} = -\frac{1}{2}\omega J_1 \left(1 + e^{-2z\sqrt{\omega}J_3} \left[1 + z^2\omega \left(J_1^2 + J_2^2\right)\right]\right) - z\sqrt{\omega}P_1P_3$$

Quantum casimir

The Poisson-deformed counterpart of the second-order Casimir reads

$$\begin{aligned} \mathcal{C} &= \frac{2}{z^2} \left[\cosh(zP_0) \cosh(z\sqrt{\omega}J_3) - 1 \right] + \omega \cosh(zP_0) (J_1^2 + J_2^2) e^{-z\sqrt{\omega}J_3} \\ &- e^{zP_0} \left(\mathbf{P}^2 + \omega \mathbf{K}^2 \right) \left[\cosh(z\sqrt{\omega}J_3) + \frac{z^2\omega}{2} (J_1^2 + J_2^2) e^{-z\sqrt{\omega}J_3} \right] \\ &+ 2\omega e^{zP_0} \left[\frac{\sinh(z\sqrt{\omega}J_3)}{\sqrt{\omega}} R_3 + z \left(J_1R_1 + J_2R_2 + \frac{z\sqrt{\omega}}{2} (J_1^2 + J_2^2) R_3 \right) e^{-z\sqrt{\omega}J_3} \right], \end{aligned}$$

where $R_a = \epsilon_{abc} K_b P_c$.

Quantum casimir

The Poisson-deformed counterpart of the second-order Casimir reads

$$\begin{aligned} \mathcal{C} &= \frac{2}{z^2} \left[\cosh(zP_0) \cosh(z\sqrt{\omega}J_3) - 1 \right] + \omega \cosh(zP_0) (J_1^2 + J_2^2) e^{-z\sqrt{\omega}J_3} \\ &- e^{zP_0} \left(\mathbf{P}^2 + \omega \mathbf{K}^2 \right) \left[\cosh(z\sqrt{\omega}J_3) + \frac{z^2\omega}{2} (J_1^2 + J_2^2) e^{-z\sqrt{\omega}J_3} \right] \\ &+ 2\omega e^{zP_0} \left[\frac{\sinh(z\sqrt{\omega}J_3)}{\sqrt{\omega}} R_3 + z \left(J_1R_1 + J_2R_2 + \frac{z\sqrt{\omega}}{2} (J_1^2 + J_2^2) R_3 \right) e^{-z\sqrt{\omega}J_3} \right], \end{aligned}$$
where $R_a = \epsilon_{abc} K_b P_c$.

• In the $z \rightarrow 0$ limit, we obtain

$$\mathcal{C} = P_0^2 - \mathbf{P}^2 + \boldsymbol{\omega} \left(\mathbf{J}^2 - \mathbf{K}^2 \right).$$

 In the ω → 0 limit, we obtain the κ-Poincaré quantum Casimir in the bicrossproduct basis:

$$\mathcal{C} = rac{2}{z^2} \left[\cosh(z P_0) - 1
ight] - e^{z P_0} \mathbf{P}^2 = rac{4}{z^2} \sinh^2(z P_0/2) - e^{z P_0} \mathbf{P}^2$$

The twisted κ -Poincaré algebra in (3+1)

When $\omega \to 0$ we get a **twisted** κ -Poincaré algebra ^{25 26 27} generated by

 $r_{z,\vartheta} = z \left(K_1 \wedge P_1 + K_2 \wedge P_2 + K_3 \wedge P_3 \right) + \vartheta J_3 \wedge P_0.$

$$\begin{split} &\Delta(P_0) = P_0 \otimes 1 + 1 \otimes P_0, \qquad \Delta(J_3) = J_3 \otimes 1 + 1 \otimes J_3, \\ &\Delta(J_1) = J_1 \otimes 1 + \cos(\vartheta P_0) \otimes J_1 + \sin(\vartheta P_0) \otimes J_2, \\ &\Delta(J_2) = J_2 \otimes 1 + \cos(\vartheta P_0) \otimes J_2 - \sin(\vartheta P_0) \otimes J_1, \\ &\Delta(P_1) = P_1 \otimes 1 + e^{-zP_0} \cos(\vartheta P_0) \otimes P_1 + e^{-zP_0} \sin(\vartheta P_0) \otimes P_2, \\ &\Delta(P_2) = P_2 \otimes 1 + e^{-zP_0} \cos(\vartheta P_0) \otimes P_2 - e^{-zP_0} \sin(\vartheta P_0) \otimes P_1, \\ &\Delta(P_3) = P_3 \otimes 1 + e^{-zP_0} \otimes P_3, \\ &\Delta(K_1) = K_1 \otimes 1 + e^{-zP_0} \cos(\vartheta P_0) \otimes K_1 + e^{-zP_0} \sin(\vartheta P_0) \otimes K_2 \\ &+ zP_2 \otimes J_3 - \vartheta P_1 \otimes J_3 - z (P_3 \cos(\vartheta P_0) \otimes J_2 - P_3 \sin(\vartheta P_0) \otimes J_1), \\ &\Delta(K_2) = K_2 \otimes 1 + e^{-zP_0} \cos(\vartheta P_0) \otimes K_2 - e^{-zP_0} \sin(\vartheta P_0) \otimes K_1 \\ &- zP_1 \otimes J_3 - \vartheta P_2 \otimes J_3 + z (P_3 \cos(\vartheta P_0) \otimes J_1 + P_3 \sin(\vartheta P_0) \otimes J_2), \\ &\Delta(K_3) = K_3 \otimes 1 + e^{-zP_0} \otimes K_3 - \vartheta P_3 \otimes J_3 \\ &+ z (P_1 \cos(\vartheta P_0) \otimes J_2 - P_2 \cos(\vartheta P_0) \otimes J_1) \\ &- z (P_1 \sin(\vartheta P_0) \otimes J_1 + P_2 \sin(\vartheta P_0) \otimes J_2). \end{split}$$

²⁵J. Lukierski and V. Lyakhovsky, Math. Phys. Contemp. Math. **391** (2005) 281

²⁶M.Daszkiewicz, Int. J. Mod. Phys A 23 (2008) 4387

²⁷A. Borowiec and A. Pachol, SIGMA 10 (2014) 107

The twisted κ -Poincaré algebra

Deformed commutation rules are given by

$$\begin{split} \{J_a, J_b\} &= \epsilon_{abc} J_c, \qquad \{J_a, P_b\} = \epsilon_{abc} P_c, \qquad \{J_a, K_b\} = \epsilon_{abc} K_c, \\ \{K_a, P_0\} &= P_a, \qquad \{K_a, K_b\} = -\epsilon_{abc} J_c, \qquad \{P_0, J_a\} = 0, \\ \{P_0, P_a\} &= 0, \qquad \{P_a, P_b\} = 0, \\ \{K_a, P_b\} &= \delta_{ab} \left(\frac{1}{2z} \left(1 - e^{-2zP_0}\right) + \frac{z}{2} \mathbf{P}^2\right) - z P_a P_b, \end{split}$$

²⁸S. Majid, H. Ruegg, Phys. Lett. B 334 (1994) 348

The twisted κ -Poincaré algebra

Deformed commutation rules are given by

$$\begin{split} \{J_a, J_b\} &= \epsilon_{abc} J_c, \qquad \{J_a, P_b\} = \epsilon_{abc} P_c, \qquad \{J_a, K_b\} = \epsilon_{abc} K_c, \\ \{K_a, P_0\} &= P_a, \qquad \{K_a, K_b\} = -\epsilon_{abc} J_c, \qquad \{P_0, J_a\} = 0, \\ \{P_0, P_a\} &= 0, \qquad \{P_a, P_b\} = 0, \\ \{K_a, P_b\} &= \delta_{ab} \left(\frac{1}{2z} \left(1 - e^{-2zP_0}\right) + \frac{z}{2} \mathbf{P}^2\right) - z P_a P_b, \end{split}$$

The deformed quadratic Casimir reduces to

$$\mathcal{C} = \frac{2}{z^2} \left[\cosh(zP_0) - 1 \right] - e^{zP_0} \mathbf{P}^2 = \frac{4}{z^2} \sinh^2(zP_0/2) - e^{zP_0} \mathbf{P}^2.$$

All these expressions correspond to the (twisted) κ -Poincaré algebra in the bicrossproduct basis. ²⁸

²⁸S. Majid, H. Ruegg, Phys. Lett. B 334 (1994) 348

 Quantum gravity models with cosmological constant should be considered in order to describe the interplay between quantum effects and cosmology.

²⁹A.B., F.J. Herranz, N.R. Bruno, arXiv:hep-th/0401244 (2004).

^{3U}A. Marciano, G. Amelino-Camelia, N.R. Bruno, G. Gubitosi, G. Mandanici, A. Melchiorri, J. Cosmol. Astropart. Phys. B 06 (2010) 030

³¹G. Amelino-Camelia G, Living Rev. Rel. 16 (2013), 5

³²J. Kowalski-Glikman, Phys. Lett. B 547 (2002) 291

³³L. Freidel, J. Kowalski-Glikman, L. Smolin, Phys. Rev. D 69 (2004) 044001

³⁴A.B., F.J. Herranz, P. Naranjo, Phys. Lett. B 746 (2015) 37

- Quantum gravity models with cosmological constant should be considered in order to describe the interplay between quantum effects and cosmology. ^{29 30 31}
- Quantum groups with cosmological constant incorporate many new features with respect to the flat (Poincaré) deformations:

The cosmological constant would modify in an essential way both the associated dispersion relations and curved momentum spaces. $^{32}\ ^{33}$

²⁹A.B., F.J. Herranz, N.R. Bruno, arXiv:hep-th/0401244 (2004).

³⁰ A. Marciano, G. Amelino-Camelia, N.R. Bruno, G. Gubitosi, G. Mandanici, A. Melchiorri, J. Cosmol. Astropart. Phys. B 06 (2010) 030

³¹G. Amelino-Camelia G, Living Rev. Rel. 16 (2013), 5

³²J. Kowalski-Glikman, Phys. Lett. B 547 (2002) 291

³³L. Freidel, J. Kowalski-Glikman, L. Smolin, Phys. Rev. D 69 (2004) 044001

³⁴A.B., F.J. Herranz, P. Naranjo, Phys. Lett. B 746 (2015) 37

- Quantum gravity models with cosmological constant should be considered in order to describe the interplay between quantum effects and cosmology. ^{29 30 31}
- Quantum groups with cosmological constant incorporate many new features with respect to the flat (Poincaré) deformations:

The cosmological constant would modify in an essential way both the associated dispersion relations and curved momentum spaces. $^{32}\ ^{33}$

• The role of twists seems to be outstanding in the DD setting. The (A)dS κ -deformation has to be enlarged by a twist in order to be consistent with a DD structure.

²⁹A.B., F.J. Herranz, N.R. Bruno, arXiv:hep-th/0401244 (2004).

³⁰ A. Marciano, G. Amelino-Camelia, N.R. Bruno, G. Gubitosi, G. Mandanici, A. Melchiorri, J. Cosmol. Astropart. Phys. B 06 (2010) 030

³¹G. Amelino-Camelia G, Living Rev. Rel. 16 (2013), 5

³²J. Kowalski-Glikman, Phys. Lett. B 547 (2002) 291

³³L. Freidel, J. Kowalski-Glikman, L. Smolin, Phys. Rev. D 69 (2004) 044001

³⁴A.B., F.J. Herranz, P. Naranjo, Phys. Lett. B 746 (2015) 37

- Quantum gravity models with cosmological constant should be considered in order to describe the interplay between quantum effects and cosmology. ^{29 30 31}
- Quantum groups with cosmological constant incorporate many new features with respect to the flat (Poincaré) deformations:

The cosmological constant would modify in an essential way both the associated dispersion relations and curved momentum spaces. $^{32}\ ^{33}$

- The role of twists seems to be outstanding in the DD setting. The (A)dS κ -deformation has to be enlarged by a twist in order to be consistent with a DD structure.
- This DD construction can be fully extended to (3+1) dimensions. ³⁴

²⁹A.B., F.J. Herranz, N.R. Bruno, arXiv:hep-th/0401244 (2004).

³⁰ A. Marciano, G. Amelino-Camelia, N.R. Bruno, G. Gubitosi, G. Mandanici, A. Melchiorri, J. Cosmol. Astropart. Phys. B 06 (2010) 030

³¹G. Amelino-Camelia G, Living Rev. Rel. 16 (2013), 5

³²J. Kowalski-Glikman, Phys. Lett. B 547 (2002) 291

³³L. Freidel, J. Kowalski-Glikman, L. Smolin, Phys. Rev. D 69 (2004) 044001

³⁴A.B., F.J. Herranz, P. Naranjo, Phys. Lett. B 746 (2015) 37

For detailed proofs and bibliography see arXiv:1502.07518 arXiv:1408.3689 arXiv:1403.4773 arXiv:1402.2884 arXiv:1303.3080

THANKS FOR YOUR ATTENTION