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The basic assumption:

Quantization of gravity should imply the introduction of a ‘quantum’
space-time in which time and/or space would exhibit a ‘quantum’ structure
that would be governed by a parameter related to the Planck scale.

Why quantum kinematical groups for quantum space-time?

@ Provide deformations of the symmetry algebras of space-times (DSR
theories) in which the quantum deformation parameter could be
identified /related with the Planck length/energy.

@ g-deformed Casimir operator generate deformed dispersion relations.

@ The Hopf algebra structure of the quantum symmetries generates
space-times whose noncommutativity is governed by the deformation
parameter and could account for Planck scale uncertainty relations
between space and time coordinates.

@ Curved momentum spaces arise in a natural way in these quantum Hopf

algebras as a consequence of the non-cocommutativity of momenta
(non-abelian addition law for momenta).
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Introduction

Quantum groups in (2+1) gravity

Quantum group symmetries in (3+1) gravity are introduced heuristically and
the full coalgebra structure is not often invoked.

However, for (241)-gravity it was stated in * that the perturbations of the
vacuum state of a Chern-Simons quantum gravity theory with
cosmological constant A, are invariant under transformations that close a
quantum (Anti) de Sitter algebra.

1G. Amelino-Camelia, L. Smolin, A. Starodubtsev, Class.Quant.Grav. (2004) 3095.
2J. Lukierski, A. Nowicki, H. Ruegg, V.N. Tolstoy, Phys. Lett. B264 (1991) 331.
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Quantum group symmetries in (3+1) gravity are introduced heuristically and
the full coalgebra structure is not often invoked.

However, for (241)-gravity it was stated in * that the perturbations of the
vacuum state of a Chern-Simons quantum gravity theory with
cosmological constant A, are invariant under transformations that close a
quantum (Anti) de Sitter algebra.

@ The low energy regime/zero-curvature limit was found to be the
known r-Poincaré quantum algebra.?

@ The x-Poincaré quantum Casimirs are (here z = 1/k):

inh?(ZP,
C, = 45”12# —p? —— deformed dispersion relation
_sinh(zPo)
z

W, = + (K1P2 - KzPl).
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Quantum groups in (2+1) gravity

This is consistent with the fact that, in (2+1)-gravity, the classical limit of
quantum groups (Poisson—Lie groups) arise in a natural way: J

@ Poisson-Lie (PL) structures on the isometry groups of (2+1) spaces with
constant curvature play a relevant role as phase spaces when (2+1)
gravity coupled to point particles is considered as a Chern-Simons
gauge theory.? * ®

@ The admissible classical r-matrices defining such Poisson-Lie groups
are such that their symmetric component coincides with a tensorized
Casimir element (Fock—-Rosly condition).

@ The corresponding quantum (Anti) de Sitter and Poincaré groups
should be meaningful ones in a quantum gravity context.

3E. Witten, Nucl. Phys. B311 (1988) 46
4V.V. Fock, A.A. Rosly, ITEP-72-92 (1992); Am. Math. Soc. Transl. 191 (1999) 67
5C. Meusburger, B.J. Schroers, Nucl. Phys. B806 (2009) 462
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Quantum groups in (2+1) with cosmological constant

For a given Lie algebra/group, there are many possible quantum
deformations (for (2+1) (A)dS see °).
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For a given Lie algebra/group, there are many possible quantum
deformations (for (2+1) (A)dS see °).

It can be proven that:
All the classical r-matrices coming from a Drinfel’d double structure of

the isometry group -(A)dS and Poincaré- fulfill the Fock-Rosly condition
and are compatible with the CS formalism. Thus:

@ All the possible DD structures for the de Sitter Lie algebra so(3,1)
and the Anti de Sitter one so(2,2) can be explicitly found.

@ Two main candidates for quantum deformations of the (A)dS
symmetries that would be appropriate in a (2+1) setting are obtained. & °
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@ Introduction

© (A)dS algebras as DDs

© (2+1) twisted K~AdS,, algebra
@ Snyder deformation

© Quantum AdS,, in (3+1)
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Drinfel'd doubles

A 2d-dimensional Lie algebra a has the structure of a (classical) Drinfel'd
double if there exists a basis {Xi,...,Xs,x,...,x?} of a in which the Lie
bracket takes the form

[Xi, Xj] = C;Xk [x',x] = £ix [x', X] = c;kxk — % X,.

J

@ This implies that the two sets of generators {Xi,..., Xy} and
{x%,...,x%} form two Lie subalgebras with structure constants c,-jf and
f,, respectively.

@ Moreover, the expression for the crossed brackets [x’, X;] implies that an
Ad-invariant symmetric bilinear form on a is given by

X, X)=0 (X' X)y=0 (X, X)=4d  Vij.

@ And a quadratic Casimir operator for a is always given by

C=1> (Xi+Xx)
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The DD — Fock/Rosly correspondence

Moreover, if a is a DD Lie algebra, its corresponding Lie group can be always
endowed with a PL structure generated by the canonical classical r-matrix
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which is a (constant) solution of the Classical Yang-Baxter equation [[r, r]] = 0.

@ The skew-symmetric component of the r-matrix is

P =1 X A X
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(A)dS algebras as DDs

The DD — Fock/Rosly correspondence

Moreover, if a is a DD Lie algebra, its corresponding Lie group can be always
endowed with a PL structure generated by the canonical classical r-matrix

r:in(X)X;

which is a (constant) solution of the Classical Yang-Baxter equation [[r, r]] = 0.

@ The skew-symmetric component of the r-matrix is
P =13 K AX,
i

@ And the symmetric component €2 coincides with the tensorized form of
the canonical quadratic Casimir element in a

Q=r—r=1> (XoX+X®x),

which is just the Fock-Rosly condition.

Therefore, in Lorentzian (2+1) gravity with nonvanishing A, any DD
structure on so0(3,1) and so(2,2) will provide an admissible r-matrix. }
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(A)dS algebras as DDs

Lie algebras of (241) Lorentzian gravity

@ The Lie algebras of the (A)dS and Poincaré groups can be written in a
common kinematical basis in terms of generators J,, P,, a=0,1,2.

10E. Witten, Nucl. Phys. B 311 (1988) 46

11A. Achucarro, P.K. Townsend, Phys. Lett. B 180 (1986) 89
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Lie algebras of (241) Lorentzian gravity

@ The Lie algebras of the (A)dS and Poincaré groups can be written in a
common kinematical basis in terms of generators J,, P,, a=0,1,2.

@ In this basis the cosmological constant A and the signature of the metric
arise as parameters in the Lie bracket: 10 11
[Ja-, Jb] — EabCJC [Jaw, Pb] — fabCPC [Pa-, Pb] — XﬁabCJc

h A for Euclidean signature;
where x =
X —A  for Lorentzian signature.

@ If g = diag(a, 1,1) with & = %1 denotes the Euclidean / Minkowski
metric and A = ax, we have

[Jo,Jl] = JQ, [Jo,JQ] = —Jl, [Jl,Jz] = OéJo7
[Jo, Po] =0, [Jo, P1] = P, [Jo, Po] = =P,
[J1, Po] = =P, [J1, P1] =0, [J1, P2] = a Po,
[42, Po] = Px, [42, Pi] = —a Po, [42, P2] =0,

[Po, Pi] = x &, [Po, P2] = —x 1, [P1, P2] = arx Jo,

10E. Witten, Nucl. Phys. B 311 (1988) 46
11A. Achucarro, P.K. Townsend, Phys. Lett. B 180 (1986) 89
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Lie algebras of (241) Lorentzian gravity

The basis {Ja, P:}a=0,1,2 have a direct geometrical interpretation

@ J, are the infinitesimal generators of boosts / rotations.

@ P, generate translations, which commute if A =0 = x.
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The basis {Ja, P:}a=0,1,2 have a direct geometrical interpretation

@ J, are the infinitesimal generators of boosts / rotations.

@ P, generate translations, which commute if A =0 = y.
For all values of the parameters «, x we have two quadratic Casimir elements
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and the space of Ad-invariant symmetric bilinear forms is two-dimensional.
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Lie algebras of (241) Lorentzian gravity

The basis {Ja, P:}a=0,1,2 have a direct geometrical interpretation

@ J, are the infinitesimal generators of boosts / rotations.

@ P, generate translations, which commute if A =0 = x.

For all values of the parameters «, x we have two quadratic Casimir elements
G=aP;+P{+P;+x(ak+ 5+ %),
G=1(a(bPo+Podo)+hPi+Pih+ P+ Prl).

and the space of Ad-invariant symmetric bilinear forms is two-dimensional.

If the duals of J, and P, are identified with, respectively, P, and J,, the
symmetric bilinear forms associated to C; and G, are

<Ja7 Pb>s = 07 <Ja7 Jb>s = Bab, <Pay Pb>s = X 8ab-
(Ja, Pb)t = gabs (Ja, Jb)e =0, (Pa, Py): = 0,

with g = diag(a, 1,1) .

11/53



(A)dS algebras as DDs

so(3,1) and so(2,2) as Drinfel'd double Lie algebras

2
3

The complete classification of the six-dimensional DD Lie algebras is known !
and is equivalent to the classification of three-dimensional real Lie bialgebras. *

12L. Snobl and L. Hlavaty, Int. J. Mod. Phys. A 17 (2002) 4043
13X. Gomez, J. Math. Phys. 41 (2000) 4939

14A.B., F.J. Herranz, C. Meusburger, Class. Quantum Grav. 30 (2013) 155012
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so(3,1) and so(2,2) as Drinfel'd double Lie algebras

2
3

The complete classification of the six-dimensional DD Lie algebras is known !
and is equivalent to the classification of three-dimensional real Lie bialgebras. *

The de Sitter Lie algebra so(3,1) admits four families of DD structures 14
(Gl X X] = X D] = fix' [ X] = clx* — £ Xe.
@ A: (8]5.ii|n) = (so(2,1)|an(2)"|n)
® B: (9[5[n) = (so(3)[an(2)|n)
@ C: (70/5.ii|n) = (iso(2)|an(2)"|n)
® D: (7u[71/,ln)
While the Anti de Sitter Lie algebra so(2,2) admits three:
@ E: (8/5.i|n) = (so(2,1)|an(2)’|n)
@ F: (60]5.iii|n) = (iso(1,1)|an(2)"|n)
@ G: (6a4]61/..in)

12
L. Snobl and L. Hlavaty, Int. J. Mod. Phys. A 17 (2002) 4043

13X. Gomez, J. Math. Phys. 41 (2000) 4939
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(A)dS algebras as DDs

Summary: DD r-matrices for so(3,1)

# Metric A Pairing Skew-symmetric r-matrix Space
(-1,1,1) »? o ) th=nhAhL+L(—PoAl+PLAh+PAL) ds?
0 )t rA=3(=PoAJo+PLAK+ Py A L) m2+1
B (1,1,1) —-n% () rp=-nhAb+LiPoAl+PLAL+PAL) H
0 ) )t rh=3(PoAJo+PLAK+PA D) E3
c  (-1,1,1) #? ()¢ & =3 APy —Jo APL+ A P) ds?t!
0 (o e r& =3 APy —Jo APL+J AP) m2+1
D (1,1,1) —n? ﬁ})%,h r{D:JoAPl—JlAPOJrMPZAJZ H3
*W(v)s +(“22,77u)( 2Jo A1 — P A Py)
0 None th=JoAPL—JH APy+ PaAd (u=1) E3
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Summary: DD r-matrices for so(3,1)

# Metric A Pairing Skew-symmetric r-matrix Space
(-1,1,1) »? o ) th=nhAhL+L(—PoAl+PLAh+PAL) ds?
0 )t rA=3(=PoAJo+PLAK+ Py A L) m2+1
B (1,1,1) —-n% () rp=-nhAb+LiPoAl+PLAL+PAL) H
0 ) )t rh=3(PoAJo+PLAK+PA D) E3
c  (-1,1,1) #? ()¢ & =3 APy —Jo APL+ A P) ds?t!
0 (o e r& =3 APy —Jo APL+J AP) m2+1
D (1,1,1) —n? ﬁ})%,h r{D:JoAPl—JlAPOJrMPZAJZ H3
*W(v)s +(“22,77u)( 2Jo A1 — P A Py)
0 None th=JoAPL—JH APy+ PaAd (u=1) E3

e The k-deformation is generated by Jy A P1 — Ji A Po.

e Case A-B corresponds to a deformation that has not been considered so far.
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(A)dS algebras as DDs

Summary: DD r-matrices for so(2,2)

# Metric A Pairing Skew-symmetric r-matrix Space
E  (-1,1,1) —n%  (,): ry=ndoAda+ L(—Po Ao+ PLAK+PyAL)  AdSZT!
0 (3 )e Hy=3(=PoAdo+PLAJL+ P2 A D) M2+
Foo(-1,1,1) —n* (,) re=3(h APy —Jo APL+ Sy AP) Ads?*?
0 (e =3 AP —Jo APL+ D AP) M2
2 2
G (-1,1,1) —n? “;pf; )i e = YL (U APy — Jg AP+ By AP Ads?'1
1—p2 1—p2), 2
+02 s + 052 (120 A Jy + Po A Pr)
0 None None M2+t
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(A)dS algebras as DDs

Summary: DD r-matrices for so(2,2)

# Metric A Pairing Skew-symmetric r-matrix Space
E  (-1,1,1) —n%  (,): ry=ndoAda+ L(—Po Ao+ PLAK+PyAL)  AdSZT!
0 (3 )e Hy=3(=PoAdo+PLAJL+ P2 A D) M2+
Foo(-1,1,1) —n* (,) re=3(h APy —Jo APL+ Sy AP) Ads?*?
0 (e =3 AP —Jo APL+ D AP) M2
2 2
G (-1,1,1) —n? “;)f;)«f)t = YL (U APy — Jg AP+ By AP Ads?'1
1—p2 1—p2), 2
+02 s + 052 (120 A Jy + Po A Pr)
0 None None M2+t

e The x-deformation Jy A P1 — Ji A Py appears again combined with a twist.
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(A)dS algebras as DDs

Two DD quantum (A)dS groups

Essentially, we have two different DD quantum deformations
for (A)dS in (2+1) dimensions:
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Essentially, we have two different DD quantum deformations
for (A)dS in (2+1) dimensions:
@ The twisted x-Ads case (C,F) generated by

I’/:%(Jl/\Po—Jo/\Pl—i-Jg/\Pg)

o Case (A,E): a ‘Snyder-type' deformation arising from the
so0(2,1) Lorentz subalgebra plus three twists:

r/:nJo/\Jz—l—%(—Po/\Jo—l—Pl/\J1—|—P2/\J2)
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(A)dS algebras as DDs

Two DD quantum (A)dS groups

Essentially, we have two different DD quantum deformations
for (A)dS in (2+1) dimensions:
@ The twisted x-Ads case (C,F) generated by

I’/:%(Jl/\Po—Jo/\Pl—i-Jg/\Pg)

o Case (A,E): a ‘Snyder-type' deformation arising from the
so0(2,1) Lorentz subalgebra plus three twists:

r/:nJo/\Jz—l—%(—Po/\Jo—l—Pl/\J1—|—P2/\J2)

Since A = £7?, the flat (Poincaré) limit is obtained when 1 — 0.
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(2+1) twisted k—AdS,, algebra

3. THE TWISTED k—ADS, ALGEBRA IN (2+1)
DIMENSIONS
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(2+1) twisted k—AdS,, algebra

The AdS,, algebra in (2+1) dimensions

The 6D Lie algebra AdS,, of the three relativistic spacetimes of constant
curvature is given in terms of the generators {J, Po, P;, Ki} as

[J, Pi] = €iP;, [J, Ki] = € Kj, [J, Po] =0,
[Pi, Kj] = —6ijPo, [Po, Ki] = — P, [Ki, K2] = —J,
[Po, P,'] = wK,-, [Pl, P2] = *(.UJ,

where w = —A, i,j =1,2 and €1 = 1.

17 /53



(2+1) twisted k—AdS,, algebra

The AdS,, algebra in (2+1) dimensions

The 6D Lie algebra AdS,, of the three relativistic spacetimes of constant
curvature is given in terms of the generators {J, Po, P;, Ki} as

[J, Pi] = €iP;, [J, Ki] = € Kj, [J, Po] =0,
[Pi, Kj] = —6ijPo, [Po, Ki] = — P, [Ki, K2] = —J,
[Po, P,'] = wK,-, [Pl, P2] = *(.UJ,

where w = —A, i,j =1,2 and €1 = 1.

According to the sign of w we find that these Lie brackets reproduce:
@ The AdS algebra, so(2,2), when w = +1/R? > 0.
@ The dS algebra, s0(3,1), when w = —1/R? < 0.

@ And the Poincaré algebra, iso(2,1), when w = 0; it corresponds to the
flat limit/contraction R — oo such that so(2,2) — iso(2,1) < so(3,1).
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The AdS,, algebra in (2+1) dimensions

The 6D Lie algebra AdS,, of the three relativistic spacetimes of constant
curvature is given in terms of the generators {J, Po, P;, Ki} as

[J, Pi] = €iP;, [J, Ki] = € Kj, [J, Po] =0,
[Pi, Kj] = —6ijPo, [Po, Ki] = — P, [Ki, K2] = —J,
[Po, P,'] = wK,-, [Pl, P2] = *(UJ,

where w = —A, i,j =1,2 and €1 = 1.

According to the sign of w we find that these Lie brackets reproduce:
@ The AdS algebra, so(2,2), when w = +1/R? > 0.
@ The dS algebra, s0(3,1), when w = —1/R? < 0.

@ And the Poincaré algebra, iso(2,1), when w = 0; it corresponds to the
flat limit/contraction R — oo such that so(2,2) — iso(2,1) < so(3,1).

The two Casimir invariants of AdS,, are given by
C=P, P +w(—K) W= —JP+ KiP, — K2P

C comes from the Killing—Cartan form, and W is the Pauli-Lubanski vector.
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(2+1) twisted k—AdS,, algebra

The kappa-AdS,, quantum group: first order relations

Let us consider the following classical r-matrix on AdS,,
I’ZZ(K1/\P1+K2/\P2)+’£9J/\P0

where z=1/k =Inq.

The parameter ¢ is a generic one associated to the twist, that for ¥ = —iz
yields the DD structure.



(2+1) twisted k—AdS,, algebra

The kappa-AdS,, quantum group: first order relations

Let us consider the following classical r-matrix on AdS,,
I’:Z(K1/\P1+K2/\P2)+19J/\Po

where z=1/k =Ingq.

The parameter ¢ is a generic one associated to the twist, that for ¥ = —iz
yields the DD structure.

@ The first order deformation of the coproduct is given by the
cocommutator § through the relation §(Y;) =[1Q Yi+ Yi®1,r]:

5(Po) =6(J) =0,

0(P1) =z(P1 APy —wKa ANJ) +9(Po A P2 +wKi A J),
0(P2) =2z(Po AN Po+wKi ANJ) —9(Po A P1—wkKa A J),
0(Ki) =z(KiAPo+ PaANJ)+3(PoANKo— PLAJ),
0(K)=z(KoAPo — PLAJ)—3(PoANKi+ PaAJ).
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(2+1) twisted k—AdS,, algebra

Twisted k-AdS,, quantum group: first order relations

We denote by {é, )?H,é,-} the dual non-commutative coordinates of the
generators {J, P,,, Ki}, respectively.

The dual of the cocommutator map gives the first order quantum group:
[f0, %1] = —z&1 — V5o, [%0, %] = —z% + V%, [%1,%] =0, J
as well as
[0, %] = ze; & + 9&; [0.6] = —w (zes % +9%),  [0.%] =0,

[)?ngf] = _Zéi - 196"] éﬁ [él7é2] =0, [)?iaéj] =0, ihj=1,2.

15P. Maslanka, J. Phys. A 26 (1993) L1251

165. Majid, H. Ruegg, Phys. Lett. B 334 (1994) 348
175. Zakrzewski, J. Phys. A 27 (1994) 2075
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(2+1) twisted k—AdS,, algebra

Twisted k-AdS,, quantum group: first order relations

We denote by {é, )?N,g,-} the dual non-commutative coordinates of the
generators {J, P,,, Ki}, respectively.

The dual of the cocommutator map gives the first order quantum group:
[f0, %1] = —z&1 — V5o, [%0, %] = —z% + V%, [%1,%] =0, J
as well as
[0, %] = ze; & + 9&; [0.6] = —w (zes % +9%),  [0.%] =0,

[)?Ovéf] = _Zéi - 1961'] éﬁ [51762] =0, [)?iaéj] =0, ihj=1,2.
The well-known x-Minkowski spacetime '° 1® 17 is given by

[)?0,)?1] = —Z)?l, [5\(0,5\(2] = —Z)?z, [)?1,)?2] = O, zZ = l/li.

15P. Maslanka, J. Phys. A 26 (1993) L1251

165. Majid, H. Ruegg, Phys. Lett. B 334 (1994) 348
175. Zakrzewski, J. Phys. A 27 (1994) 2075
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(2+1) twisted k—AdS,, algebra

Twisted k-Minkowski spacetime

The ‘quantum’ time and space translation parameters do not commute:

[)A(o,)?l] = —zX — 19)?2, [)A(o,)?z] = —z% + '19)?1, [)A(l,)AQ] =0.

@ This algebra is not isomorphic to k-Minkowski as a real Lie algebra.
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Twisted k-Minkowski spacetime

The ‘quantum’ time and space translation parameters do not commute:

[)A(o,)?l] = —zX — 19)?2, [)A(o,)?z] = —z% + '19)?1, [)A(l,)AQ] =0.

@ This algebra is not isomorphic to k-Minkowski as a real Lie algebra.

@ These relations do not depend on w, so the three first order (A)dS and
Minkowskian non-commutative spacetimes coincide.

@ Higher order corrections depending on w will appear when the full
quantum (A)dS groups are considered.
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(2+1) twisted k—AdS,, algebra

Twisted k-Minkowski spacetime

The ‘quantum’ time and space translation parameters do not commute:

[)A(o,)?l] = —zX — 19)?2, [)A(o,)?z] = —z% + '19)?1, [)A(l,)AQ] =0.

@ This algebra is not isomorphic to k-Minkowski as a real Lie algebra.

@ These relations do not depend on w, so the three first order (A)dS and
Minkowskian non-commutative spacetimes coincide.

@ Higher order corrections depending on w will appear when the full
quantum (A)dS groups are considered.

@ Other ‘quantum’ coordinates (rotation angle, velocities) are also
non-commuting objects.
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(2+1) twisted k—AdS,, algebra

The k-AdS,, Poisson-Lie group

The quantization of the PL group associated to the previous r matrix will
give rise to the all-orders twisted quantum AdS,, group.
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(2+1) twisted k—AdS,, algebra

The k-AdS,, Poisson-Lie group

The quantization of the PL group associated to the previous r matrix will
give rise to the all-orders twisted quantum AdS,, group.

Therefore, we have to compute:
@ The group element
T = exp(x0Po) exp(x1P1) exp(x2 P2) exp(&1K1) exp(&2K2) exp(0J)
@ Left and right invariant vector fields, Y! and Y*
@ The Sklyanin bracket:
{f.e} =r"(Y Y g - YY)

where
rZZ(Kl/\P1+K2/\P2)+19J/\Po

In this way we obtain the fundamental Poisson—Lie brackets between the six
commutative group coordinates {0, x,., & }.

21/53



(2+1) twisted k—AdS,, algebra

Fundamental Poisson brackets |

Relations involving spacetime x,, group coordinates:

tanh /wxg
/@ cosh?/wxy

{x0,x1} = -z

{x0, %} = —

{X]_,X2} =0

tanh
L tan \/E)Q_H9
w

7

tanh
— ¥ cosh \/Exlan\/éusz
sinh \/wxy
Vw




(2+1) twisted k—AdS,, algebra

Fundamental Poisson brackets Il

z cosh \/wxy cosh &1

X1, = — + tanh v/wxy sinh /wxy A |,

(a1} cosh \/wxy (cosh Vwxy cosh &> Ver Ve
cosh /wxq
{x1,82} = —zcosh &, B, {x2,82} =z | ———— cosh&; —cosh&; |,
cosh \/wxy
tanh &>

X, = —ZA, s = zy/wsinhy/wx; |C — ——— |,
{x2, &1} {&1, &2} = zV/wsinh Voxg < coshZ\/Ex2>
0, 0} zB ¥ cosh &1 (cosh 2\/wx; — cosh 2£5)

X0, = — —

0 cosh \/wxy 2 cosh \/wxj cosh \/wxp cosh £

sinh & sinh &1 cosh &, cosh \/wxy cosh &7 tanh &3
{x0,61} =2 B — -9 )
cosh /wxq cosh \/wx cosh \/wxy cosh /wxp
cosh y/wxy sinh cosh /wx; sinh &1 cosh
(0,62} = —2C 9 SRYEENG Ly eV o sith €y cosh &y
cosh \/wxy cosh &> cosh \/wxy
cosh sinh

{6,0) = —z cosh v/wxq sinh £, 4 Osinh &,

cosh \/wx; cosh &3

w tanh /w h h
{6, &1} = —zv/w (tanh v/wxp + tanh Vwx; B) — V@ tanh v/iox cosh & cosh &

)

cosh \/wxp
z+/w sinh /wx;
[ = —  ~ ~  _ 9+/wtanh wxy cosh
6.8} cosh2/wxjy cosh & e 3
_ sinh V/wxq sinh \/wxy + cosh \/wxq sinh €7 tanh &> 5= sinh /wxy tanh \/wx;y cosh €7 + sinh &7 sinh &3
- cosh \/wxy ’ - cosh \/wxjy cosh &7 ’
sinh /wxq tanh /wxy sinh &1 + cosh &7 sinh &7
- cosh /wxq cosh \/wxy ’
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(2+1) twisted k—AdS,, algebra

Non-commutative AdS,, spacetimes

The quantum AdS,, group in ‘local coordinates’ would be the quantization
of the above PL bracket. In particular: J
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(2+1) twisted k—AdS,, algebra

Non-commutative AdS,, spacetimes

The quantum AdS,, group in ‘local coordinates’ would be the quantization
of the above PL bracket. In particular: J

@ Since {x1,x} = 0 the quantum (2+1)D non-commutative AdS.,
space-time can be defined as

tanh y/wky . tanh /w%»
—_— — ’19 cosh ¢ _—
/o cosh? /%2 Viok Vo

1 1 1
=—z ()“q —Cwk — wqué) — (22 + Zwifk — 7w§<23> + O(w?)

[)?07 )?1] = —Z

3 2 3

o . tanh /w2 sinh /WXy

= 9
[fo, %] = —2 Jo NG

— (&2 - %w&f) +9 <§<1 + %w&f) + O,
[%1,%] = 0.
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(2+1) twisted k—AdS,, algebra

Non-commutative AdS,, spacetimes

The quantum AdS,, group in ‘local coordinates’ would be the quantization
of the above PL bracket. In particular: J

@ Since {x1,x} = 0 the quantum (2+1)D non-commutative AdS.,
space-time can be defined as

tanh y/wky . tanh /w%»
—_— — ’19 cosh ¢ _—
/o cosh? /%2 Viok Vo

1 1 1
=—z ()“q —Cwk — wqué) — (22 + Zwifk — 7w§<23> + O(w?)

[)?07 )?1] = —Z

3 2 3

o . tanh /w2 sinh /WXy

= 9
[fo, %] = —2 Jo NG

— (&2 - %w&f) +9 <§<1 + %w&f) + O,
[%1,%] = 0.

@ The twisted xk-Minkowski space M2*! is the first-order noncommutative

spacetime for all the AdS,, groups.
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(2+1) twisted k—AdS,, algebra

Quantum k-AdS,, algebra in (2+1)

The AdS., universal enveloping algebra has the following cocommutative
Hopf algebra structure

A(Po)=1®Po+Po®1, AN)=10J+J®1,
AP)=1® P +Pi®1, AK)=1K + K ®1
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(2+1) twisted k—AdS,, algebra

Quantum k-AdS,, algebra in (2+1)

The AdS., universal enveloping algebra has the following cocommutative
Hopf algebra structure

A(Po)=1®Po+Po®1, AN)=10J+J1,
AP)=1® P +Pi®1, AK)=1K + K ®1

The k-AdS,, r-matrix
r:z(Kl/\P1—|—K2/\P2)

provides the first order deformation of the coproduct
A = ZA(k) = Zﬁké(k) = Ao+ 25(1) —+ 0[22]
0(P)=0 6(J)=0
5(P,') = Z(P,‘ A Py — weiKj A J)

5(K;) = Z(K,' A Po+€iPi A J).
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(2+1) twisted k—AdS,, algebra

Quantum k-AdS,, algebra in (2+1)

The full (all orders in z) quantum universal enveloping algebra of the
r-deformation of AdS,, can be constructed'® and reads

AP)=10P+P®l, AJ)=1®J+J31,
A(P;) = e 2P cosh(2/wJ) ® Pi + P; @ e cosh(Z /w0 J)

+yvwe 2P sinh(2/0J) @ ;K — /w €K @ 20 sinh(Z/wJ),
A(K;) = e 3P0 cosh(3v/wJ)) @ Ki + K; ®eifo cosh(3+/wJ)

smh(\FﬁJ) ® 3P+ 5P @ ¢ smh(\/b%fJ)7

18A.B., F.J. Herranz, M.A. del Olmo, M. Santander, J. Phys. A 27 (1994) 1283.
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(2+1) twisted k—AdS,, algebra

Quantum k-AdS,, algebra in (2+1)

The full (all orders in z) quantum universal enveloping algebra of the
r-deformation of AdS,, can be constructed'® and reads

AP)=10P+P®l, AJ)=1®J+J31,
A(P;) = e 2P cosh(2/wJ) ® Pi + P; @ e cosh(Z /w0 J)

+yvwe 2P sinh(2/0J) @ ;K — /w €K @ 20 sinh(Z/wJ),
A(K;) = e 3P0 cosh(3v/wJ)) @ Ki + K; ®eifo cosh(3+/wJ)

h(Zy/@J h(Zy/wJ
Sm(ﬁ)@eUP+EUP® sm(\f)7
Vw Vw
[J7Pl']:€"j Js [J K]:Eljl{]v [J’Po]:O7
(P K] = —0, 5P T, [Pe K] = —
inh(zy/wJ
[K1, Ka] = — cosh(zPy) % [Po, Pi] = wki,
inh(zy/@J
[P1, P2] = —w cosh(zPy) %7

18A.B., F.J. Herranz, M.A. del Olmo, M. Santander, J. Phys. A 27 (1994) 1283.
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(2+1) twisted k—AdS,, algebra

Quantum k-AdS,, algebra in (2+1)

@ This is exactly the quantum (A)dS algebra introduced in * as the
symmetry algebra of the vacuum excitations in (2+1) quantum gravity.

19G. Amelino-Camelia, L. Smolin, A. Starodubtsev, Class.Quant.Grav. (2004) 3095.
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(2+1) twisted k—AdS,, algebra

Quantum k-AdS,, algebra in (2+1)

@ This is exactly the quantum (A)dS algebra introduced in * as the
symmetry algebra of the vacuum excitations in (2+1) quantum gravity.

@ Quantum Casimir invariants read

C; = 4 cos(z/w) {smhzz(ngo) cosh® (£y/wJ) + Smhz(zﬂ cosh? (;Po)}
_sin(zy/w) (2 2

e (P 1K )
W, = — cos(zv/w) Smh(f%ij) smh(zzPO) Sln(y)(K1P2 KaP1).

19G. Amelino-Camelia, L. Smolin, A. Starodubtsev, Class.Quant.Grav. (2004) 3095.
27 /53



(2+1) twisted k—AdS,, algebra

Quantum k-AdS,, algebra in (2+1)

@ This is exactly the quantum (A)dS algebra introduced in * as the

symmetry algebra of the vacuum excitations in (2+1) quantum gravity
@ Quantum Casimir invariants read

C, = 4 cos(z\/w) {smhz(g%)

D cout (5 m) 1+ BV ot () |
_sin(zy/w) (2 2
e (P —|—wK)
W, = — cos(zy/w) Smh(f%ij) smh(zzPo) Sm(f%;)(fﬁpz Ko Py).

@ Note that in AdS,, momenta do not commute

G. Amelino-Camelia, L. Smolin, A. Starodubtsev, Class.Quant.Grav. (2004) 3095
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(2+1) twisted k—AdS,, algebra

Quantum k-AdS,, algebra in (2+1)

@ This is exactly the quantum (A)dS algebra introduced in * as the
symmetry algebra of the vacuum excitations in (2+1) quantum gravity
@ Quantum Casimir invariants read

C, = 4 cos(zy/w) {Sinhzz(zg ) cosh® (£y/wJ) + 7sinh2(z§2\/5J) cosh® (£P. )}
_sin(zy/w) (2 2
e (P 1K )
W, = — cos(zy/w) Smh(f%ij) smh(zzPo) sm(%) (KiP2 — K> Pr).

@ Note that in AdS,, momenta do not commute

@ The AdS., dispersion relation coming from C, would also include the
Lorentz sector.

G. Amelino-Camelia, L. Smolin, A. Starodubtsev, Class.Quant.Grav. (2004) 3095
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(2+1) twisted k—AdS,, algebra

Quantum k-AdS,, algebra in (2+1)

@ This is exactly the quantum (A)dS algebra introduced in * as the
symmetry algebra of the vacuum excitations in (2+1) quantum gravity.

@ Quantum Casimir invariants read

inh?(Z P inh?(Z/wJ
C, = 4cos(z/w) {5”12(220) cosh® (£y/wJ) + w cosh? (;Po)}

sm(f%») (P2+wK2)
W, = — cos(z/) smh(?J) smh(zzPo) sm(?‘)

(KiP2 — K> Pr).

@ Note that in AdS,, momenta do not commute.

@ The AdS., dispersion relation coming from C, would also include the
Lorentz sector.

@ The coproduct (addition) of momenta involves rotation and boosts.

G. Amelino-Camelia, L. Smolin, A. Starodubtsev, Class.Quant.Grav. (2004) 3095.
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(2+1) twisted k—AdS,, algebra

Adding the twist induced by the DD

The twisted coproduct Ay . is obtained by twisting the k—AdS,, coproduct
through an element Fy € k-AdS., ® k-AdS,,:

Dy (Y) = Fol(Y)Fy', VY € k-AdS.,

where
Fo = exp(—=09J A Po).

2OA.B. , F.J. Herranz, C. Meusburger, P. Naranjo, SIGMA 10 (2014) 052
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(2+1) twisted k—AdS,, algebra

Adding the twist induced by the DD

The twisted coproduct Ay . is obtained by twisting the k—AdS,, coproduct
through an element Fy € k-AdS., ® k-AdS,,:

Dy (Y) = Fol(Y)Fy', VY € k-AdS.,

where
Fo = exp(—=09J A Po).

The twist Fy satisfies the so-called twisting co-cycle and normalisation
conditions

.7:19,12(Az ® id)]‘—ﬂ = .7:19,23(id ® Az)]:ﬁ s (6 ® id)]:ﬂ =1= (id ® 6).7‘—19 .

2OA.B. , F.J. Herranz, C. Meusburger, P. Naranjo, SIGMA 10 (2014) 052
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(2+1) twisted k—AdS,, algebra

Adding the twist induced by the DD

The twisted coproduct Ay . is obtained by twisting the k—AdS,, coproduct
through an element Fy € k-AdS., ® k-AdS,,:

Dy (Y) = Fol(Y)Fy', VY € k-AdS.,

where
Fo = exp(—=09J A Po).

The twist Fy satisfies the so-called twisting co-cycle and normalisation
conditions

.7:19,12(Az ® id)]‘—ﬂ = .7:19,23(id ® Az)]:ﬁ s (6 ® id)]:ﬂ =1= (id ® 6).7‘—19 .

In this way we obtain (full expressions can be found in °):

2OA.B. , F.J. Herranz, C. Meusburger, P. Naranjo, SIGMA 10 (2014) 052

28 /53



(2+1) twisted k—AdS,, algebra

Adding the twist induced by the DD

Dy (P)=1@Pr+Py®1, Dy ())=1Q0J+J®1,
By 2(P) = Bo(P) + e 270 cosh(£ /@) [cos(9+/@J) cos(9Pg) — 1] ® P;

+eo 3P0 cosh(Z /@ J) sin(9Pg) cos(9v/@J) ® e;jP; — Ve~ 3P0 cosh( £ /@ J) sin(9+/@J) cos(9Pg) ® K;

— VB e 3P0 cosh(5 /@) sin(9/@J) sin(8Pg) ® €;K; + P; ® e 70 cosh(5 /@) [cos(9+/E) cos(9Py) — 1]

— P ® o3P0 cosh(4+/wJ) sin(9Pg) cos(¥vwJ) + Vw K; ® e3P0 cosh( 4 +/wJ) sin(¥+/wJ) cos(9Pg)

— VT €K ® 370 cosh( /) sin(9+/5J) sin(8Pg) — e~ 570 sinh(5 /@) sin(93/J) sin(9Po) © P

+¢7 3P0 sinh(2 /@) sin(9+/5J) cos(9P0) ® € P; — /@ e 370 sinh( /@ J) sin(9Po) cos(91/T) @ K

+ V@ e 570 sinn(2 /@) [cos(9/@J) cos(9Pp) — 1] ® €K;

+ P ® 570 sinh(Z /@) sin(9+/J) sin(9 o)

+ eP; ® 370 sinh( /@) sin(9/@J) cos(9Pp)

— V& K; @ 20 sinh(5 /@) sin(9Py) cos(9/5J)

—VweiKi ® e3P0 sinh(3 v/wJ) [cos(9v/wJ) cos(9Pg) — 1] .

But commutation rules are left unchanged.
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Snyder deformation

4. THE SNYDER-TYPE DEFORMATION
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Snyder deformation

First order deformation

The canonical classical r-matrix is J

r/=’l7Jo/\J2+%(—Po/\Jo—f—Pl/\Jl—f—Pz/\Jz).
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Snyder deformation

First order deformation

The canonical classical r-matrix is
r/=’l7Jo/\J2+%(—Po/\Jo—f—Pl/\Jl—f—Pz/\Jz). J

Again, we will multiply r’ by the quantum double deformation parameter z and
02(J) = nzh A Jo, 0,(h) =0, 0.(h) =nzh A b,
0:(Po) =z (P1 APy +nPy A Jo+ 7]2J2 A Jl) ,

5Z(P1) =z (Po APy +nPyANJo—nPa N+ 712./2 A Jo) ,

5.(Py) = z (P1 APy + 1Py A o+ 12 A J1) ,
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Snyder deformation

First order deformation

The canonical classical r-matrix is
r/=’l7Jo/\J2+%(—Po/\Jo—f—Pl/\Jl—f—Pz/\Jz). J

Again, we will multiply r’ by the quantum double deformation parameter z and
02(J) = nzh A Jo, 0,(h) =0, 0.(h) =nzh A b,
0:(Po) =z (P1 APy +nPy A Jo+ 7]2J2 A Jl) ,

5Z(P1) =z (Po APy +nPyANJo—nPa N+ 712./2 A Jo) ,

5.(Py) = z (P1 APy + 1Py A o+ 12 A J1) ,

@ The cosmological constant is A = —n°.

@ The n — 0 limit gives a (simpler) twisted Poincaré algebra.
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Snyder deformation

First order non—commutative space—time

In terms of the dual basis (%,,6,) (a=0,1,2), we find that the first-order dual
Lie brackets among the spacetime coordinates are given by

[)?0,)’\(1] = —Z)?z, [)?0,)?2] = Z)?l, [)?1,)?2] = Z)A(o.

This is a noncommutative spacetime of Snyder type.
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Snyder deformation

First order non—commutative space—time

In terms of the dual basis (%Xa,6.) (a = 0,1,2), we find that the first-order dual
Lie brackets among the spacetime coordinates are given by

[)?0,)’\(1] = —Z)?Q, [)?0,)?2] = Z)?l, [)?1,)?2] = Z)A(o.

This is a noncommutative spacetime of Snyder type.

The remaining first-order non-commutative relations between the quantum
spacetime and Lorentz parameters are

[00,01) = —nz(Bo — n%),  [0o, 0] = —1’z81,  [61,02] = nz(f2 — nko),

[0o, %] = —nz%4, [Bo, ] = —nz%,  [fo, %] =0,
[01, %] = 0, [01, %] =0, [01, %] = 0,
[ég, )A<o] = 07 [ég, )’?1] = 77/2)?2, [é\Q, )?2] = ’I]Z),ﬁ.

Note that in the Poincaré limit all these relations vanish.
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Snyder deformation

All-orders Snyder nc spacetime deformation

From the Sklyanin bracket we get the PL brackets for the x, coordinates

{x0, 2} = —ZM T,

{x0, %2} = ZM T,

{x, %} = L Lanmxo T,

where  T(xo, x1) = cosnxo(cos nxp cosh nxi + sinh 7x1).

21A.B., F.J. Herranz, C. Meusburger, Phys. Lett. B 732 (2014) 201 33/53



Snyder deformation

All-orders Snyder nc spacetime deformation

From the Sklyanin bracket we get the PL brackets for the x, coordinates

tanh

{x0,31} = _annhnx T,

h
{x0, %2} = A TES) T,

[t

{x1, %} = zﬁan o T,

n
where T (X0, x1) = cos nxo(cos 1xo cosh 1x1 + sinh 7)x1).

Therefore, we have a cosmological constant deformation of a ‘Snyder’
so(2,1) nc spacetime, whose quantization is by no means trivial:

2
{x0,x1} = —zx0 — nzx1x + r/ z (XoXQ %
1 "3
{0, %} =zx1 + 128 —n°z (x$x — 13 ) + o[n’],
xi

2
{x1,%} =zx0 +nzxox1 —n°z (%XO — 1

21A.B., F.J. Herranz, C. Meusburger, Phys. Lett. B 732 (2014) 201 33/53



Quantum AdS,, in (3+1)

5. QUANTUM ADS, IN (3+1) DIMENSIONS
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Quantum AdS,, in (3+1)

The AdS,, algebra in (3+1)

The (3+1)D AdS., Lie algebra:

[Ja7 Jb] = €achc> [Ja» Pb] = €apcPec 5 [Jaa Kb] = 6achC7
[Km PO] = Pa7 [Kan Pb] = 5abP0: [Ka7 Kb] = _€achc,
[P07Pa]:UJKa» [Paypb]:_W€achc» [PO:Ja]:O~
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Quantum AdS,, in (3+1)

The AdS,, algebra in (3+1)

The (3+1)D AdS., Lie algebra:

[Ja7 Jb] = €achc> [Ja» Pb] = €apcPec 5 [Jaa Kb] = €achC7
[Km PO] = Pa7 [Kan Pb] = 5abP0: [Ka7 Kb] = _€achc,
[P07Pa]:WKa» [Paypb]:_wﬁachc» [PO:Ja]:0~

Explicilty, AdS3™ comprises the three following Lorentzian spacetimes:
@ w > 0,A < 0: AdS spacetime AdS*™ = SO(3,2)/S0(3,1).
@ w < 0,A > 0: dS spacetime dS**! = SO(4,1)/S0(3,1).
@ w = A = 0: Minkowski spacetime M*™ =ISO(3,1)/S0(3,1).
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Quantum AdS,, in (3+1)

The AdS,, algebra in (3+1)

The (3+1)D AdS., Lie algebra:

[Ja7 Jb] = €achc> [Ja7 Pb] = €apcPec 5 [Ja7 Kb] = 6achc>
[Ka, Po] = P, [Ka, Pb] = dabPo , [Ka, Kb] = —€abcde
[P07Pa]:WKa» [Paypb]:_wﬁachc» [PO:Ja]:0~

Explicilty, AdS3™ comprises the three following Lorentzian spacetimes:
@ w > 0,A < 0: AdS spacetime AdS*™ = SO(3,2)/S0(3,1).
@ w < 0,A > 0: dS spacetime dS**! = SO(4,1)/S0(3,1).
@ w = A = 0: Minkowski spacetime M*™ =ISO(3,1)/S0(3,1).

Casimir operators:
c:P§—P2+w(J2—K2)

W= W5 —-W>+w(J-K)>
Wo=1J-P W, = —JaPo + €apc Kb Pe
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Quantum AdS,, in (3+1)

A Drinfel'd double structure for s0(5)

Classical Lie algebra ¢, generated by {h,,e+.} (a=1,2):
[h1, ex1] = ex1, [h1, ex2] = Fexa, [e+1,e-1] = hu,
[h2, ex1] = Fes1, [h2, ex2] = £2es2, [e+2,e—2] = h2,
[, h] =0, [e-1,e12] =0, [es1,e-2] =0.
[6‘+17 6‘+2] = €43, [6'72, 671] = €e-3,
[e+1, e+3] = €44, [673, 671] = €-4.

36 /53



Quantum AdS,, in (3+1)

A Drinfel'd double structure for s0(5)

Classical Lie algebra ¢, generated by {h,,e+.} (a=1,2):
[h1, ex1] = ex1, [h1, ex2] = Fexa, [e+1,e-1] = hu,
[h2, ex1] = Fes1, [h2, ex2] = £2es2, [e+2,e—2] = h2,
[, h] =0, [e-1,e12] =0, [es1,e-2] =0.
[6‘+17 6‘+2] = €43, [6'72, 671] = €e-3,
[e+1, e+3] = €44, [673, 671] = €-4.

@ The generators {ha,exp} (a=1,2;b=1,...,4) span s0(5)

e = — % (Joa —ih3), fo = 25 (Jos +i3),

e = \%(JB +id2), = —\%(J% —ih2),

e = 1(Jor — J3a —i(Jos + J1a)) , o= —1(Jor — Jaa +i(Jos + Jua))
&3 = (S +id2), fs = — 2 (Joa — ido2) ,

%(Jm + Sz +i(Joz — J14)) , fa=-—1 (J01 + Jza — i(Joz — J14)) .

o
I
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Quantum AdS,, in (3+1)

A Drinfel'd double structure for s0(5)

Classical Lie algebra ¢, generated by {h,,e+.} (a=1,2):
[h1, e+1] = £et1, [h1, ex2] = Fexa, [es1,e-1] = h1,
[h2, ex1] = Fet1, [h2, ex2] = £2e42, [er2, e—2] = h2,
[P, h2] =0, [e—1,e02] =0, [es1,e-2] = 0.
[6‘+1, 6’+2] = €43, [6'72, 671] = €e-3,
[e+1, e+3] = €44, [673, 6‘71] =e_4. )
@ The generators {hs,e1p} (a=1,2,b=1,...,4) span so0(5)
e = — % (Joa —ih3), fo= %(JM +ihs),
e = \%(Jx +id2), h = —%/(J23 ih12),
e = 1(Jor — J3a —i(Jos + J1a)) , o= —1(Jor — Jaa +i(Jos + Jua))
&3 = (S +id2), fs = — 2 (Joa — ido2) ,
es = 1(Jor + Jaa +i(Jos — Ja)), fo=—1(Jor + Jaa —i(Joz — Jua)) .
@ Let us consider f, =e_, (b=1,...,4) and
o= (4D k), = (1 i)k — i)
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Quantum AdS,, in (3+1)

A Drinfel'd double structure for so(5)

We take the two Borel subalgebras as the DD subalgebras: }

Xi = et xX=fi=ze., i=0,...,4.
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Quantum AdS,, in (3+1)

A Drinfel'd double structure for so(5)

We take the two Borel subalgebras as the DD subalgebras:
Xi = et xiEf;Ee,;, i=0,...,4. }

Therefore, s0(5) is endowed with the following DD structure:

@ Canonical pairing
<ei7ej>:07 <ﬁ76>:07 <fi7ej>:§fj7 Vi j.

@ Casimir element
1 , .
C= 52:(X X+ Xix') = §_70 (fiei + eif;).

@ Canonical DD classical r-matrix

4 4
r:ZXi@)Xi:Zﬁ@ei, rskew:%ZXi/\Xi:%Zfi/\ei- J
i i—0 i i—0
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Quantum AdS,, in (3+1)

The DD structure for AdS,
@ Change of basis
Pi=iVwld, Po=iVwlde, P3=ivwlds, Po=—vwla,
Ky =1ikha, Ky =iy, Kz =iy,
S = s, b =—ls, 5=
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Quantum AdS,, in (3+1)

The DD structure for AdS,
@ Change of basis
Pi=iVwld, Po=iVwlde, P3=ivwlds, Po=—vwla,
Ky =1ikha, Ky =iy, Kz =iy,
S = s, b =—ls, 5=

@ Pairing and Casimir operator:
<P0, P0>w = —Ww, <Pa, Pb>w = W(Sab, <Ka, Kb>u = 5ab7 <Ja7 Jb>w = 7(5313,

Cw:wC:;(ng—PS—&-wi(Kf—Jf))

a=1
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Quantum AdS,, in (3+1)

The DD structure for AdS,
@ Change of basis

Pi=iVwdyr, Pr=iVwdn, P3=iVwls, Po=—vwlua,
Ky =i, Ky =iy, Kz =iy,

J1 = U3,

N
I

-3, J3=Jpo.

@ Pairing and Casimir operator:
<P0, P0>w = —Ww, <Pa, Pb>w = UJ(sab, <Ka, Kb>w = 5ab7 <Ja7 Jb>w = 7(5313,

Cw:wC:;(ng—PS—&-wi(Kf—Jf))

a=1

The DD classical r-matrices in (24+1) and (3+1)

ro=vVwr=z(KiAPi+ KaAPr+ Kz AP3s+Vwh A+ Po A J)
——

k-AdS,, twist
roy1 =z(KiAPL+ Ko AP2)+0J APy .
——
~-AdS,, twist
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Quantum AdS,, in (3+1)

A DD quantum AdS,, deformation

Cocommutator map in (3+1)

0(Po) =0, 0(h)=0,
ZPo/\J3+\/>J1AJ2) 5(J3):Z(J1/\Po+\/u7J3/\J2),

(
6(P1) = 2((Py = Ps) A P+ (o A (Ki = Ks) + s A Ka) + Vi A P2,
6(P2) = 2(Pa A Pot (i A K+ Jo A Ko+ Ku A Js) + V(P A+ Py A s) ),
6(Ps) = z((Py+ Pa) A P+t A (K + Ka) + Ko A ) + Vi ds A P2 ),
6(K1) = z((Ki = Ka) A Po+ (Py— Pa) Ay + Pa A s + Vi A Ka),

6(K2) = 2(Ka A Po+ Js A PL+ Py Ao+ Py A i+ Vi (K A s+ Ka A Js) ),

6(K3)

Z((K1+K3)/\Po+(P1+P3)/\J2+J1/\P2+\/5J3/\K2).

Note the strong effect of w in the addition law for momenta.
The rotation subalgebra is also influenced by the twist.
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Quantum AdS,, in (3+1)

First—order noncommutative spacetime

First-order Poisson—Lie brackets defined by the 4-dimensional
spacetime PL subalgebra:

X% =z (xMxP)
W) = 2,
(3% = z(x3=xY),

{x?,xP} = o, a,b=1,2,3.
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Quantum AdS,, in (3+1)

First—order noncommutative spacetime

First-order Poisson—Lie brackets defined by the 4-dimensional
spacetime PL subalgebra:

X% =z (xMxP)
W) = 2,
{x}x%} = 2z (X3—X1) ,

{x?,xP} = o, a,b=1,2,3.

This is nonisomorphic to (34+1) x—Minkowski spacetime.

The x? coordinate is distinguished.
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Quantum AdS,, in (3+1)

Restoring space isotropy

Space isotropy can be manifestly recovered in this DD quantum deformation
by considering the following automorphism of the AdS,, algebra: %

~ 1 1 1 1 /- ~ ~

Vi= EYit oYk v, Yl—%(Ysz—ng),

Vo= Lviy Ly_Lly % 1(\7+?’+\~/)

2= —F= 1 —F= 2 — —= r3, 2= —F= 1 2 3,
f f V2 V3

~ 1 /~ ~

Y: it — Yi=— (Yi-Ya),

3= \f 1 f 3 \/5(1 2)

for 'Y e {P,K, 1}, Py = Py.

22A.B., F.J. Herranz, P. Naranjo, Phys. Lett. B 746 (2015) 37
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Quantum AdS,, in (3+1)

Restoring space isotropy

Space isotropy can be manifestly recovered in this DD quantum deformation
by considering the following automorphism of the AdS,, algebra: %

o 1 1 1 1 /& o o
Yl—%YI'F%YZ"‘EY& Yl_%(Y1+Y2—2Y3),
S 1 1 1 1 /o S o
Yo=—Yi+-—=Yr— — Ys, Yo=— (Yi+ Yo+ V3),
? 3 ' V3 RV R ? \/§(1 2+ %)
~ 1 /~ ~

Y: it — Yi=— (Yi-Ya),

3= \f 1 f ~3 \/5(1 2)

for Y e {P,K,J}, Po = Po.

In this way, the classical r-matrix is transformed into

- - - . ~ - 1 - - ~ -
?W:z(KlAP1+K2AP2+K3AP3+%Po/\(J1+J2+J3)
+%(31/\32+32/\:/3+33/\31))

22A.B., F.J. Herranz, P. Naranjo, Phys. Lett. B 746 (2015) 37
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Quantum AdS,, in (3+1)

Restoring space isotropy

The first-order noncommutative spacetime spanned by the dual
coordinates of the spacetime subalgebra reads

000} =2 (x4 (672 =)

{x,xPY =0 a,b=1,23.
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Quantum AdS,, in (3+1)

Full quantum twisted AdS,, algebra

Instead of considering
rIZ(Kl/\P1+K2/\P2+K3/\P3+\/LT)J3/\J1)+P0/\J2,
we take the equivalent AdS,, deformation generated by

rz_’ﬂ:Z(KlAP1+K2/\P2+K3/\P3+\/5.]1/\.}2)+19J3/\P0.

2?’A.B., F. Musso, J. Phys. A: Math. Theor 46 (2013) 195203
2

4A.B., F.J. Herranz, F. Musso, P. Naranjo, preprint (2015)
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Quantum AdS,, in (3+1)

Full quantum twisted AdS,, algebra

Instead of considering

YIZ(Kl/\P1+K2/\P2+K3/\P3+\/LT)J3/\J1)+P0/\J2,

we take the equivalent AdS,, deformation generated by

rz_’ﬂ:Z(KlAP1+K2/\P2+K3/\P3+\/5.]1/\.}2)+19J3/\P0.

The Poisson analogue of the corresponding all-orders quantum algebra can
be explicitly computed by following the dual Poisson—Lie group approach
based in the quantum duality principle and presented in 2

We end up with the following coproduct in a ‘bicrossproduct’ basis: 2*
A(P) = Ph®1+1® P, A(B)=h5R1L+1® 4,
A(h) = h® eV 4 cos(IPy) @ K + sin(9Po) ® Ja,
A(h) = b @ eV 4 cos(9P) @ J» — sin(9P) @

2?’A.B., F. Musso, J. Phys. A: Math. Theor 46 (2013) 195203
2

4A.B., F.J. Herranz, F. Musso, P. Naranjo, preprint (2015)
43 /53



Quantum AdS,, in (3+1)

Nonlinear composition of momenta

A(Py) = P ® cosh(zv/wJ3) cos(9/wz) + e 270 cos(91Py) @ Py
1Py ® sinh(zv/@ J3) sin(9y/wJ3) + e 20 sin(9Pg) ® P,
—VwKy @ sinh(zv/wJ3) cos(9v/wJ3) + VwKy @ cosh(zv/wJ3) sin(9+/w3)
—z/w [(P3 ® Jy — VwK3 ® »)Cy(Po, 13) + (P3 ® Jo + VwKs ® J1)Sy(Po, J3)]
2
+% [2(\/5K1 — P)® hhe VB (Vaky + P @ (] — Jzz)efzﬁ%] Co(Po, J3)
2 ~
— T oVEke + P ® dihe VI 4 (VK — P @ (F — B)em V] 5 (P, ),
A(Py) = P, ® cosh(zv/wJ3) cos(9v/wl3) + e~ cos(IPg) ® P
— Py ® sinh(zy/@J3) sin(9v/wJ3) — e 270 sin(9Py) ® Py
+vVwKy ® sinh(zv/wJ3) cos(9v/wz) + VwkKy @ cosh(zv/wd3) sin(9v/wz)
—2Vw [(P3 ® J2 + VK3 ® J1)Cy(Po, J3) — (P3 ® 1 — VWK3 ® J2)Sy(Po, J3)]
—TW [20V5Ks + P1) @ e *VB 4 (ViKy — o) @ (] — S)e ™V ] Cy(Po, J5)
— 5 [2VEK = P © e YIS — (Ve + P @ (f = B)e VB By (P, ),
A(Ps) = e’ZPU ® P3 + P3 @ cos(9/@J3) + VaKs @ sin(9v/Js)

+zv/w [(\/':‘Kz +P) @ e VIS (VTK - Py) ® J2efzﬁj3] Cy(Po, J3)

+2V/5 [(VKe + P1) ® he™TVEB 4 (VIKy — Py) © e V5] 5y (o, 43),
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Quantum AdS,, in (3+1)

Quantum commutation rules

2zv/wh 1 f
{hh) =" SEE (R4 B), (hkh=—h (k=4

2z /w 2

{4, P} = 2w P, {J1, P2} = Ps — z\/wJi Py, {h,P3} = =P,
{h, P} = =P3 + z/wh P>, {h, P} = —z\/whPr, {h,Ps} =Py,
{h, P1} = P2, {h, P} = =P, {4, Ps} =0,
{4, Ki} = zywh Kz, {h, Ko} = K3 — z/whKi,  {h, K3} = —Ko,
{h,Ki} = =Kz + z,/wh K>, {h, Ko} = —z\/whKi, {h, K3} = Ki,
{4k, K1} = K, {4k, K2} = —Ki, {J3, Kz} =0,
{Ks, Po} = P, {Po, P.} = wKs, {Po, J2} =0,
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Quantum AdS,, in (3+1)

Quantum commutation rules

(K, P} = i (cosh(22v/J5) — e 720 “Jz eV (24 ) 4 Z(P+Rs-p)
(

VG Kk R (1 *hﬂa) 2 (1 emVEhY)]

{K2, P2} = 2i (cosh(2zfj3) _ e—2zP0) Lz 3,2 2 (112 +122)2 B
Z
+% [KE+ K — K3+ (1+ e*2z\/513) bR (1 e2VERY),

1— e22P Z

(K3, P} = ————+7 {(P1+ﬁKz)2+(P2—\/JKl)z—Pg—wKzﬂ

+zw572z‘/;J3 (le + J22) R
{P1, K2} = =z (P1P2 + wKiKy — VwP3Ks + w'1112e_22\/:d3) ,
{P2. K1} = z (P1P2 + wKi1 Ky + VwP3Ks + wJ1J2672Z\/5J3) ;
(P, K3} = %\/EJ1 (1= VB 120 (8 +8)]) +2 (PP + wKiKs + VakaPs)
{P3, Ki} = %\/:'Jl (1= e ?VEB 120 (8 +8)]) +2 (PP + wKiKs — VEPKs)
(P2, K3} = %\/JJZ (1 _ eV [1 _ 2w (J1 ny: )]) + 2 (PyPs + wKyKs — VoK P3)
{P3, Ka} = %\/DJ2 (1 _ eV [1 — 7 w( 24 ) ) + 2 (PaP3 + wKaKs + VP K3)
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Quantum AdS,, in (3+1)

Quantum commutation rules

sinh(2z/wh3)  zy/@ B2, 2
{Ki, Ko} = T oave 2 (Jf+ 5 +2K3) - — ¢ 2V (1 + J3)

{Ki, K3} = %JQ (147255 14 20 (B + B)]) + 2v/oKeKs

{Ka, K3} = —%Jl (1 +e VOl (14 220 (2 + J22)]) — z/wK1 K3

sinh(2zy/wJ3 z/w 2305/ = 2
% - (2P% + w(J2 + 53)) — e 2205 (g2 4 3)

{P1,P3} = %w.’g (1 + e 22V [1 + 22w (J12 + J%)J) + Z\/;P2P3

{P1, P2} = —w

{P2,P3} = *%WA (1 + e 22V [1 4 220 (U2 + Jg)]) — z\/wP1P3
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Quantum AdS,, in (3+1)

Quantum casimir

The Poisson—deformed counterpart of the second-order Casimir reads

C = 2 cosh(zPy) cosh(zy/w ) — 1] + w cosh(zPo)(J2 + J3)e 2V
72
2 )
—e*h (P2 + wKz) [cosh(z\/ah) + ZT(M(Jl2 + ng)efz‘/ah}

+2we™ {%R@ +z <J1R1 + bRy + —z*zﬁ(ﬁ + J§)R3> e_z\/@s} ’

where R, = €apc KpPe.
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Quantum AdS,, in (3+1)

Quantum casimir

The Poisson—deformed counterpart of the second-order Casimir reads

C = 2 cosh(zPy) cosh(zy/w ) — 1] + w cosh(zPo)(J2 + J3)e 2V
72
2 )
—e*h (P2 + wKz) [cosh(z\/ah) + ZT(M(Jl2 + ng)efz‘/ah}

+2we™ {%R@ +z <J1R1 + bRy + —z*zﬁ(ﬁ + J§)R3> e_z\/@s} ’

where R, = €apc KpPe.

@ In the z — 0 limit, we obtain
C:PS—P2+w(J2—K2).

@ In the w — 0 limit, we obtain the x-Poincaré quantum Casimir in the
bicrossproduct basis:

2 2 4 . z
C= 2 [cosh(zPo) — 1] — e°P? = 5 sinh?(zPy/2) — o P?
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Quantum AdS,, in (3+1)

The twisted x—Poincaré algebra in (3+1)

25 26 27

When w — 0 we get a twisted x-Poincaré algebra generated by
rr9=z(KiANPL+ Ko AP+ Kz AP3)+ 9 A Po.

A(Po)=P()®1+1®Po7 A(J?,)Z_]3®1~|>].®_/37

A(h)=h ®14 cos(IPy) @ J1 +sin(IPy) ® Jo,
A(h) = ® 1+ cos(IPy) ® Jp —sin(IPy) ® Ji,
A(P) =P @14 e P cos(9Py) @ P1 + e~ sin(9Py) @ Ps,

)

A(P) =Py @14 e 0 cos(9Py) @ Po — e~ sin(9Py) ® Py,
AP)=P3@1+e 0 P;,
A(K1) = K1 ® 1+ e 2P0 cos(9Py) @ K1 4+ e 20 sin(9P) @ Kz

+2P2 ® J3 — 9P1 ® J3 — z (P3 cos(0Po) ® J2 — P3sin(9Po) ® ),
A(Kz) = Ko @ 1+ e 2P0 cos(9Pg) @ Ky — e 70 sin(¥Po) @ K

—2zP1 ® J3 — 9P2 @ J3 + 2 (P3 cos(9Po) @ 1 + P3sin(9Po) ® o),
AK) =Kz @14+ e 70 QK3 —9P3 ® J3
+2z (P1 cos(9Pg) ® Jo — P2 cos(9Pg) ® J1)
—z (Pysin(9Py) ® hi + Pasin(9P0) © Ja) .

25J. Lukierski and V. Lyakhovsky, Math. Phys. Contemp. Math. 391 (2005) 281
26M.Daszl»(iewicz, Int. J. Mod. Phys A 23 (2008) 4387

27 ) Borowiec and A. Pachol, SIGMA 10 (2014) 107 49/53
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Deformed commutation rules are given by

{Ja7 Jb} = EachQ {J37 Pb} = EabcP<:7 {J37 Kb} = EachC7
{Kaa PO} = Paa {K37 Kb} = _eabCJC7 {P07 Ja} = 0:
{Po, P} =0, {P,, Py} =0,

{Kay Po} = dat (i (1-e®)+ EPQ) — 2P,Py,

285. Majid, H. Ruegg, Phys. Lett. B 334 (1994) 348
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The twisted xk—Poincaré algebra

Deformed commutation rules are given by

{Ja7 Jb} = EachQ {J37 Pb} = EabcP<:7 {J37 Kb} = EachC7
{Kaa PO} = Paa {K37 Kb} = _eabCJC7 {P07 Ja} = 0:
{Po, P} =0, {P,, Py} =0,

{Kay Po} = dat (i (1-e®)+ EPQ) — 2P,Py,

The deformed quadratic Casimir reduces to

2 4 . 2
C = = [cosh(zPo) — 1] — eop? = - sinh®(zPo/2) — e P

V4

All these expressions correspond to the (twisted) x-Poincaré algebra in the
bicrossproduct basis. %
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Conclusions
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considered in order to describe the interplay between quantum effects and
cosmology. 2° 3¢ 3
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@ Quantum groups with cosmological constant incorporate many new
features with respect to the flat (Poincaré) deformations:
The cosmological constant would modify in an essential way both the
associated dispersion relations and curved momentum spaces. ¥ 3

@ The role of twists seems to be outstanding in the DD setting. The (A)dS

r-deformation has to be enlarged by a twist in order to be consistent
with a DD structure.
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Conclusions

@ Quantum gravity models with cosmological constant should be
considered in order to describe the interplay between quantum effects and
cosmology. 2° 3¢ 3

@ Quantum groups with cosmological constant incorporate many new
features with respect to the flat (Poincaré) deformations:

The cosmological constant would modify in an essential way both the
associated dispersion relations and curved momentum spaces. ¥ 3

@ The role of twists seems to be outstanding in the DD setting. The (A)dS
r-deformation has to be enlarged by a twist in order to be consistent
with a DD structure.

@ This DD construction can be fully extended to (3+1) dimensions. *
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