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Introduction (A)dS algebras as DDs (2+1) twisted κ–AdSω algebra Snyder deformation Quantum AdSω in (3+1)

Quantum groups and the Planck scale

The basic assumption:

Quantization of gravity should imply the introduction of a ‘quantum’
space-time in which time and/or space would exhibit a ‘quantum’ structure
that would be governed by a parameter related to the Planck scale.

Why quantum kinematical groups for quantum space-time?

Provide deformations of the symmetry algebras of space-times (DSR
theories) in which the quantum deformation parameter could be
identified/related with the Planck length/energy.

q-deformed Casimir operator generate deformed dispersion relations.

The Hopf algebra structure of the quantum symmetries generates
space-times whose noncommutativity is governed by the deformation
parameter and could account for Planck scale uncertainty relations
between space and time coordinates.

Curved momentum spaces arise in a natural way in these quantum Hopf
algebras as a consequence of the non-cocommutativity of momenta
(non-abelian addition law for momenta).
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Introduction (A)dS algebras as DDs (2+1) twisted κ–AdSω algebra Snyder deformation Quantum AdSω in (3+1)

Quantum groups in (2+1) gravity

Quantum group symmetries in (3+1) gravity are introduced heuristically and
the full coalgebra structure is not often invoked.

However, for (2+1)-gravity it was stated in 1 that the perturbations of the
vacuum state of a Chern-Simons quantum gravity theory with
cosmological constant Λ, are invariant under transformations that close a
quantum (Anti) de Sitter algebra.

The low energy regime/zero-curvature limit was found to be the
known κ-Poincaré quantum algebra.2

The κ-Poincaré quantum Casimirs are (here z = 1/κ):

Cz = 4
sinh2( z

2
P0)

z2
− P2 −→ deformed dispersion relation

Wz = − sinh(zP0)

z
+ (K1P2 − K2P1).

1
G. Amelino-Camelia, L. Smolin, A. Starodubtsev, Class.Quant.Grav. (2004) 3095.

2
J. Lukierski, A. Nowicki, H. Ruegg, V.N. Tolstoy, Phys. Lett. B264 (1991) 331.
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Quantum groups in (2+1) gravity

This is consistent with the fact that, in (2+1)-gravity, the classical limit of
quantum groups (Poisson–Lie groups) arise in a natural way:

Poisson-Lie (PL) structures on the isometry groups of (2+1) spaces with
constant curvature play a relevant role as phase spaces when (2+1)
gravity coupled to point particles is considered as a Chern-Simons
gauge theory.3 4 5

The admissible classical r-matrices defining such Poisson-Lie groups
are such that their symmetric component coincides with a tensorized
Casimir element (Fock–Rosly condition).

The corresponding quantum (Anti) de Sitter and Poincaré groups
should be meaningful ones in a quantum gravity context.

3
E. Witten, Nucl. Phys. B311 (1988) 46

4
V.V. Fock, A.A. Rosly, ITEP-72-92 (1992); Am. Math. Soc. Transl. 191 (1999) 67

5
C. Meusburger, B.J. Schroers, Nucl. Phys. B806 (2009) 462
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Quantum groups in (2+1) with cosmological constant

For a given Lie algebra/group, there are many possible quantum
deformations (for (2+1) (A)dS see 6).

It can be proven that:

All the classical r-matrices coming from a Drinfel’d double structure of
the isometry group -(A)dS and Poincaré- fulfill the Fock-Rosly condition
and are compatible with the CS formalism. Thus:

All the possible DD structures for the de Sitter Lie algebra so(3, 1)
and the Anti de Sitter one so(2, 2) can be explicitly found. 7

Two main candidates for quantum deformations of the (A)dS
symmetries that would be appropriate in a (2+1) setting are obtained. 8 9

6
A.B., F.J. Herranz, F. Musso, J. Phys. Conf. Series 532 (2014) 012002

7
A.B., F.J. Herranz, C. Meusburger, Class. Quantum Grav. 30 (2013) 155012

8
A.B., F.J. Herranz, C. Meusburger, Phys. Lett. B 732 (2014) 201

9
A.B., F.J. Herranz, P. Naranjo, SIGMA 10 (2014) 052
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2. (A)dS algebras as Drinfel’d Doubles
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Drinfel’d doubles

A 2d-dimensional Lie algebra a has the structure of a (classical) Drinfel’d
double if there exists a basis {X1, . . . ,Xd , x

1, . . . , xd} of a in which the Lie
bracket takes the form

[Xi ,Xj ] = ck
ij Xk [x i , x j ] = f ij

k xk [x i ,Xj ] = c i
jkx

k − f ik
j Xk .

This implies that the two sets of generators {X1, . . . ,Xd} and
{x1, . . . , xd} form two Lie subalgebras with structure constants ck

ij and

f ij
k , respectively.

Moreover, the expression for the crossed brackets [x i ,Xj ] implies that an
Ad-invariant symmetric bilinear form on a is given by

〈Xi ,Xj〉 = 0 〈x i , x j〉 = 0 〈x i ,Xj〉 = δi
j ∀i , j .

And a quadratic Casimir operator for a is always given by

C = 1
2

X
i

(x i Xi + Xi x
i ).

8 / 53
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The DD – Fock/Rosly correspondence

Moreover, if a is a DD Lie algebra, its corresponding Lie group can be always
endowed with a PL structure generated by the canonical classical r-matrix

r =
X

i

x i ⊗ Xi

which is a (constant) solution of the Classical Yang-Baxter equation [[r , r ]] = 0.

The skew-symmetric component of the r -matrix is

r ′ = 1
2

X
i

x i ∧ Xi .

And the symmetric component Ω coincides with the tensorized form of
the canonical quadratic Casimir element in a

Ω = r − r ′ = 1
2

X
i

(x i ⊗ Xi + Xi ⊗ x i ),

which is just the Fock-Rosly condition.

Therefore, in Lorentzian (2+1) gravity with nonvanishing Λ, any DD
structure on so(3, 1) and so(2, 2) will provide an admissible r-matrix.
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Lie algebras of (2+1) Lorentzian gravity

The Lie algebras of the (A)dS and Poincaré groups can be written in a
common kinematical basis in terms of generators Ja,Pa, a = 0, 1, 2.

In this basis the cosmological constant Λ and the signature of the metric
arise as parameters in the Lie bracket: 10 11

[Ja, Jb] = εabcJ
c [Ja,Pb] = εabcP

c [Pa,Pb] = χ εabcJ
c

where χ =

(
Λ for Euclidean signature;

−Λ for Lorentzian signature.

If g = diag(α, 1, 1) with α = ±1 denotes the Euclidean / Minkowski
metric and Λ = αχ, we have

[J0, J1] = J2, [J0, J2] = −J1, [J1, J2] = α J0,

[J0,P0] = 0, [J0,P1] = P2, [J0,P2] = −P1,

[J1,P0] = −P2, [J1,P1] = 0, [J1,P2] = αP0,

[J2,P0] = P1, [J2,P1] = −αP0, [J2,P2] = 0,

[P0,P1] = χ J2, [P0,P2] = −χ J1, [P1,P2] = αχ J0,

10
E. Witten, Nucl. Phys. B 311 (1988) 46

11
A. Achucarro, P.K. Townsend, Phys. Lett. B 180 (1986) 89
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Lie algebras of (2+1) Lorentzian gravity

The basis {Ja,Pa}a=0,1,2 have a direct geometrical interpretation

Ja are the infinitesimal generators of boosts / rotations.

Pa generate translations, which commute if Λ = 0 = χ.

For all values of the parameters α, χ we have two quadratic Casimir elements

C1 = αP2
0 + P2

1 + P2
2 + χ (α J2

0 + J2
1 + J2

2 ),

C2 = 1
2

(α (J0 P0 + P0 J0) + J1 P1 + P1 J1 + J2 P2 + P2 J2) .

and the space of Ad-invariant symmetric bilinear forms is two-dimensional.

If the duals of Ja and Pa are identified with, respectively, Pa and Ja, the
symmetric bilinear forms associated to C1 and C2 are

〈Ja,Pb〉s = 0, 〈Ja, Jb〉s = gab, 〈Pa,Pb〉s = χ gab.

〈Ja,Pb〉t = gab, 〈Ja, Jb〉t = 0, 〈Pa,Pb〉t = 0,

with g = diag(α, 1, 1) .
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Introduction (A)dS algebras as DDs (2+1) twisted κ–AdSω algebra Snyder deformation Quantum AdSω in (3+1)

so(3, 1) and so(2, 2) as Drinfel’d double Lie algebras

The complete classification of the six-dimensional DD Lie algebras is known 12

and is equivalent to the classification of three-dimensional real Lie bialgebras. 13

The de Sitter Lie algebra so(3, 1) admits four families of DD structures 14

(c i
jk |f ij

k |η) : [Xi ,Xj ] = ck
ij Xk [x i , x j ] = f ij

k xk [x i ,Xj ] = c i
jkx

k − f ik
j Xk .

A: (8|5.ii |η) ≡ (so(2, 1)|an(2)′′|η)

B: (9|5|η) ≡ (so(3)|an(2)|η)

C: (70|5.ii |η) ≡ (iso(2)|an(2)′′|η)

D: (7µ|71/µ|η)

While the Anti de Sitter Lie algebra so(2, 2) admits three:

E: (8|5.i |η) ≡ (so(2, 1)|an(2)′|η)

F: (60|5.iii |η) ≡ (iso(1, 1)|an(2)′′′|η)

G: (6a|61/a.i |η)

12
L. Snobl and L. Hlavaty, Int. J. Mod. Phys. A 17 (2002) 4043

13
X. Gomez, J. Math. Phys. 41 (2000) 4939

14
A.B., F.J. Herranz, C. Meusburger, Class. Quantum Grav. 30 (2013) 155012
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Introduction (A)dS algebras as DDs (2+1) twisted κ–AdSω algebra Snyder deformation Quantum AdSω in (3+1)

Summary: DD r -matrices for so(3, 1)

# Metric Λ Pairing Skew-symmetric r -matrix Space

A (−1, 1, 1) η2 〈 , 〉t r′A = ηJ1 ∧ J2 + 1
2

(−P0 ∧ J0 + P1 ∧ J1 + P2 ∧ J2) dS2+1

0 〈 , 〉t r′A = 1
2

(−P0 ∧ J0 + P1 ∧ J1 + P2 ∧ J2) M2+1

B (1, 1, 1) −η2 〈 , 〉t r′B = −ηJ1 ∧ J2 + 1
2

(P0 ∧ J0 + P1 ∧ J1 + P2 ∧ J2) H3

0 〈 , 〉t r′B = 1
2

(P0 ∧ J0 + P1 ∧ J1 + P2 ∧ J2) E3

C (−1, 1, 1) η2 〈 , 〉t r′C = 1
2

(J1 ∧ P0 − J0 ∧ P1 + J2 ∧ P2) dS2+1

0 〈 , 〉t r′C = 1
2

(J1 ∧ P0 − J0 ∧ P1 + J2 ∧ P2) M2+1

D (1, 1, 1) −η2 µ(µ2−1)

(1+µ2)2 〈 , 〉t r′D = J0 ∧ P1 − J1 ∧ P0 +
(1+µ2)

2µ
P2 ∧ J2 H3

− 2µ2

η(1+µ2)2 〈 , 〉s +
(µ2−1)

2ηµ
(η2J0 ∧ J1 − P0 ∧ P1)

0 None r′D = J0 ∧ P1 − J1 ∧ P0 + P2 ∧ J2 (µ = 1) E3

• The κ-deformation is generated by J0 ∧ P1 − J1 ∧ P0.

• Case A–B corresponds to a deformation that has not been considered so far.
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Introduction (A)dS algebras as DDs (2+1) twisted κ–AdSω algebra Snyder deformation Quantum AdSω in (3+1)

Summary: DD r -matrices for so(2, 2)

# Metric Λ Pairing Skew-symmetric r -matrix Space

E (−1, 1, 1) −η2 〈 , 〉t r′E = ηJ0 ∧ J2 + 1
2

(−P0 ∧ J0 + P1 ∧ J1 + P2 ∧ J2) AdS2+1

0 〈 , 〉t r′E = 1
2

(−P0 ∧ J0 + P1 ∧ J1 + P2 ∧ J2) M2+1

F (−1, 1, 1) −η2 〈 , 〉t r′F = 1
2

(J1 ∧ P0 − J0 ∧ P1 + J2 ∧ P2) AdS2+1

0 〈 , 〉t r′F = 1
2

(J1 ∧ P0 − J0 ∧ P1 + J2 ∧ P2) M2+1

G (−1, 1, 1) −η2 (1+ρ2)

2ρ2 〈·, ·〉t r′G =
(1+ρ2)

4
(J1 ∧ P0 − J0 ∧ P1) + ρ

2
J2 ∧ P2 AdS2+1

+
(1−ρ2)

2ηρ2 〈·, ·〉s +
(1−ρ2)

4η
(η2J0 ∧ J1 + P0 ∧ P1)

0 None None M2+1

• The κ-deformation J0 ∧ P1 − J1 ∧ P0 appears again combined with a twist.

• Case E is again similar to cases A–B.
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Introduction (A)dS algebras as DDs (2+1) twisted κ–AdSω algebra Snyder deformation Quantum AdSω in (3+1)

Two DD quantum (A)dS groups

Essentially, we have two different DD quantum deformations
for (A)dS in (2+1) dimensions:

The twisted κ-Ads case (C,F) generated by

r ′ = 1
2
(J1 ∧ P0 − J0 ∧ P1 + J2 ∧ P2)

Case (A,E): a ‘Snyder-type’ deformation arising from the
so(2, 1) Lorentz subalgebra plus three twists:

r ′ = ηJ0 ∧ J2 + 1
2
(−P0 ∧ J0 + P1 ∧ J1 + P2 ∧ J2)

Since Λ = ±η2, the flat (Poincaré) limit is obtained when η → 0.
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Introduction (A)dS algebras as DDs (2+1) twisted κ–AdSω algebra Snyder deformation Quantum AdSω in (3+1)

3. The twisted κ–AdSω algebra in (2+1)
dimensions
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Introduction (A)dS algebras as DDs (2+1) twisted κ–AdSω algebra Snyder deformation Quantum AdSω in (3+1)

The AdSω algebra in (2+1) dimensions

The 6D Lie algebra AdSω of the three relativistic spacetimes of constant
curvature is given in terms of the generators {J,P0,Pi ,Ki} as

[J,Pi ] = εijPj , [J,Ki ] = εijKj , [J,P0] = 0,

[Pi ,Kj ] = −δijP0, [P0,Ki ] = −Pi , [K1,K2] = −J,

[P0,Pi ] = ωKi , [P1,P2] = −ωJ,

where ω = −Λ, i , j = 1, 2 and ε12 = 1.

According to the sign of ω we find that these Lie brackets reproduce:

The AdS algebra, so(2, 2), when ω = +1/R2 > 0.

The dS algebra, so(3, 1), when ω = −1/R2 < 0.

And the Poincaré algebra, iso(2, 1), when ω = 0; it corresponds to the
flat limit/contraction R →∞ such that so(2, 2)→ iso(2, 1)← so(3, 1).

The two Casimir invariants of AdSω are given by

C = P2
0 − P2 + ω(J2 −K2) W = −JP0 + K1P2 − K2P1

C comes from the Killing–Cartan form, and W is the Pauli–Lubanski vector.
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The kappa-AdSω quantum group: first order relations

Let us consider the following classical r-matrix on AdSω

r = z(K1 ∧ P1 + K2 ∧ P2) + ϑJ ∧ P0

where z = 1/κ = ln q.

The parameter ϑ is a generic one associated to the twist, that for ϑ = −iz
yields the DD structure.

The first order deformation of the coproduct is given by the
cocommutator δ through the relation δ(Yi ) = [1⊗ Yi + Yi ⊗ 1, r ]:

δ(P0) = δ(J) = 0,

δ(P1) = z(P1 ∧ P0 − ωK2 ∧ J) + ϑ(P0 ∧ P2 + ωK1 ∧ J),

δ(P2) = z(P2 ∧ P0 + ωK1 ∧ J)− ϑ(P0 ∧ P1 − ωK2 ∧ J),

δ(K1) = z(K1 ∧ P0 + P2 ∧ J) + ϑ(P0 ∧ K2 − P1 ∧ J),

δ(K2) = z(K2 ∧ P0 − P1 ∧ J)− ϑ(P0 ∧ K1 + P2 ∧ J).
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Twisted κ-AdSω quantum group: first order relations

We denote by {θ̂, x̂µ, ξ̂i} the dual non-commutative coordinates of the
generators {J,Pµ,Ki}, respectively.

The dual of the cocommutator map gives the first order quantum group:

[x̂0, x̂1] = −zx̂1 − ϑx̂2, [x̂0, x̂2] = −zx̂2 + ϑx̂1, [x̂1, x̂2] = 0,

as well as

[θ̂, x̂i ] = zεij ξ̂j + ϑξ̂i [θ̂, ξ̂i ] = −ω (zεij x̂j + ϑx̂i ) , [θ̂, x̂0] = 0,

[x̂0, ξ̂i ] = −z ξ̂i − ϑεij ξ̂j , [ξ̂1, ξ̂2] = 0, [x̂i , ξ̂j ] = 0, i , j = 1, 2.

The well-known κ-Minkowski spacetime 15 16 17 is given by

[x̂0, x̂1] = −zx̂1, [x̂0, x̂2] = −zx̂2, [x̂1, x̂2] = 0, z = 1/κ.

15
P. Maslanka, J. Phys. A 26 (1993) L1251

16
S. Majid, H. Ruegg, Phys. Lett. B 334 (1994) 348

17
S. Zakrzewski, J. Phys. A 27 (1994) 2075
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Introduction (A)dS algebras as DDs (2+1) twisted κ–AdSω algebra Snyder deformation Quantum AdSω in (3+1)

Twisted κ-Minkowski spacetime

The ‘quantum’ time and space translation parameters do not commute:

[x̂0, x̂1] = −zx̂1 − ϑx̂2, [x̂0, x̂2] = −zx̂2 + ϑx̂1, [x̂1, x̂2] = 0.

This algebra is not isomorphic to κ-Minkowski as a real Lie algebra.

These relations do not depend on ω, so the three first order (A)dS and
Minkowskian non-commutative spacetimes coincide.

Higher order corrections depending on ω will appear when the full
quantum (A)dS groups are considered.

Other ‘quantum’ coordinates (rotation angle, velocities) are also
non-commuting objects.
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Introduction (A)dS algebras as DDs (2+1) twisted κ–AdSω algebra Snyder deformation Quantum AdSω in (3+1)

The κ-AdSω Poisson-Lie group

The quantization of the PL group associated to the previous r matrix will
give rise to the all–orders twisted quantum AdSω group.

Therefore, we have to compute:

The group element

T = exp(x0P0) exp(x1P1) exp(x2P2) exp(ξ1K1) exp(ξ2K2) exp(θJ)

Left and right invariant vector fields, Y L and Y R

The Sklyanin bracket:

{f , g} = r ij(Y L
i f Y L

j g − Y R
i f Y R

j g)

where
r = z(K1 ∧ P1 + K2 ∧ P2) + ϑJ ∧ P0

In this way we obtain the fundamental Poisson–Lie brackets between the six
commutative group coordinates {θ, xµ, ξi}.
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Introduction (A)dS algebras as DDs (2+1) twisted κ–AdSω algebra Snyder deformation Quantum AdSω in (3+1)

Fundamental Poisson brackets I

Relations involving spacetime xµ group coordinates:

{x0, x1} = −z
tanh

√
ωx1√

ω cosh2√ωx2

− ϑ cosh
√
ωx1

tanh
√
ωx2√
ω

{x0, x2} = −z
tanh

√
ωx2√
ω

+ ϑ
sinh
√
ωx1√
ω

{x1, x2} = 0
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Fundamental Poisson brackets II

{x1, ξ1} =
z

cosh
√
ωx2

 
cosh
√
ωx2

cosh
√
ωx1

−
cosh ξ1

cosh ξ2

+ tanh
√
ωx1 sinh

√
ωx2 A

!
,

{x1, ξ2} = −z cosh ξ2 B, {x2, ξ2} = z

 
cosh
√
ωx1

cosh
√
ωx2

cosh ξ1 − cosh ξ2

!
,

{x2, ξ1} = −zA, {ξ1, ξ2} = z
√
ω sinh

√
ωx1

 
C −

tanh ξ2

cosh2
√
ωx2

!
,

{x0, θ} = −
zB

cosh
√
ωx1

+
ϑ

2

cosh ξ1
`

cosh 2
√
ωx1 − cosh 2ξ2

´
cosh
√
ωx1 cosh

√
ωx2 cosh ξ2

,

{x0, ξ1} = z

 
sinh ξ2

cosh
√
ωx1

B −
sinh ξ1 cosh ξ2

cosh
√
ωx1 cosh

√
ωx2

!
− ϑ

cosh
√
ωx1 cosh ξ1 tanh ξ2

cosh
√
ωx2

,

{x0, ξ2} = −zC + ϑ
cosh
√
ωx1 sinh ξ1

cosh
√
ωx2

, {θ, x1} = z
cosh
√
ωx1

cosh ξ2

C + ϑ
sinh ξ1 cosh ξ2

cosh
√
ωx2

,

{θ, x2} = −z
cosh
√
ωx1 sinh ξ1

cosh
√
ωx2 cosh ξ2

+ ϑ sinh ξ2,

{θ, ξ1} = −z
√
ω
`

tanh
√
ωx2 + tanh

√
ωx1 B

´
− ϑ
√
ω tanh

√
ωx1 cosh ξ1 cosh ξ2

cosh
√
ωx2

,

{θ, ξ2} =
z
√
ω sinh

√
ωx1

cosh2
√
ωx2 cosh ξ2

− ϑ
√
ω tanh

√
ωx2 cosh ξ2,

A =
sinh
√
ωx1 sinh

√
ωx2 + cosh

√
ωx1 sinh ξ1 tanh ξ2

cosh
√
ωx2

, B =
sinh
√
ωx1 tanh

√
ωx2 cosh ξ1 + sinh ξ1 sinh ξ2

cosh
√
ωx2 cosh ξ2

,

C =
sinh
√
ωx1 tanh

√
ωx2 sinh ξ1 + cosh ξ1 sinh ξ2

cosh
√
ωx1 cosh

√
ωx2

.
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Non-commutative AdSω spacetimes

The quantum AdSω group in ‘local coordinates’ would be the quantization
of the above PL bracket. In particular:

Since {x1, x2} = 0 the quantum (2+1)D non-commutative AdSω
space-time can be defined as

[x̂0, x̂1] = −z
tanh

√
ωx̂1√

ω cosh2√ωx̂2

− ϑ cosh
√
ωx̂1

tanh
√
ωx̂2√
ω

= −z

„
x̂1 −

1

3
ωx̂3

1 − ωx̂1x̂
2
2

«
− ϑ

„
x̂2 +

1

2
ωx̂2

1 x̂2 −
1

3
ωx̂3

2

«
+O(ω2),

[x̂0, x̂2] = −z
tanh

√
ωx̂2√
ω

+ ϑ
sinh
√
ωx̂1√
ω

= −z

„
x̂2 −

1

3
ωx̂3

2

«
+ ϑ

„
x̂1 +

1

6
ωx̂3

1

«
+O(ω2),

[x̂1, x̂2] = 0.

The twisted κ-Minkowski space M2+1
z is the first-order noncommutative

spacetime for all the AdSω groups.
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Quantum κ-AdSω algebra in (2+1)

The AdSω universal enveloping algebra has the following cocommutative
Hopf algebra structure

∆(P0) = 1⊗ P0 + P0 ⊗ 1, ∆(J) = 1⊗ J + J ⊗ 1,

∆(Pi ) = 1⊗ Pi + Pi ⊗ 1, ∆(Ki ) = 1⊗ Ki + Ki ⊗ 1

The κ-AdSω r -matrix
r = z(K1 ∧ P1 + K2 ∧ P2)

provides the first order deformation of the coproduct

∆ =
∞X

k=0

∆(k) =
∞X

k=0

ηkδ(k) = ∆0 + z δ(1) + o[z2]

δ(P0) = 0 δ(J) = 0

δ(Pi ) = z(Pi ∧ P0 − ωεijKj ∧ J)

δ(Ki ) = z(Ki ∧ P0 + εijPj ∧ J).
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Quantum κ-AdSω algebra in (2+1)

The full (all orders in z) quantum universal enveloping algebra of the
κ-deformation of AdSω can be constructed18 and reads

∆(P0) = 1⊗ P0 + P0 ⊗ 1, ∆(J) = 1⊗ J + J ⊗ 1,

∆(Pi ) = e−
z
2
P0 cosh( z

2

√
ωJ)⊗ Pi + Pi ⊗ e

z
2
P0 cosh( z

2

√
ωJ)

+
√
ω e−

z
2
P0 sinh( z

2

√
ωJ)⊗ εijKj −

√
ω εijKj ⊗ e

z
2
P0 sinh( z

2

√
ωJ),

∆(Ki ) = e−
z
2
P0 cosh( z

2

√
ωJ)⊗ Ki + Ki ⊗ e

z
2
P0 cosh( z

2

√
ωJ)

−e−
z
2
P0

sinh( z
2

√
ωJ)

√
ω

⊗ εijPj + εijPj ⊗ e
z
2
P0

sinh( z
2

√
ωJ)

√
ω

,

[J,Pi ] = εijPj , [J,Ki ] = εijKj , [J,P0] = 0,

[Pi ,Kj ] = −δij
sinh(zP0)

z
cosh(z

√
ωJ), [P0,Ki ] = −Pi ,

[K1,K2] = − cosh(zP0)
sinh(z

√
ωJ)

z
√
ω

, [P0,Pi ] = ωKi ,

[P1,P2] = −ω cosh(zP0)
sinh(z

√
ωJ)

z
√
ω

,

18
A.B., F.J. Herranz, M.A. del Olmo, M. Santander, J. Phys. A 27 (1994) 1283.

26 / 53



Introduction (A)dS algebras as DDs (2+1) twisted κ–AdSω algebra Snyder deformation Quantum AdSω in (3+1)

Quantum κ-AdSω algebra in (2+1)

The full (all orders in z) quantum universal enveloping algebra of the
κ-deformation of AdSω can be constructed18 and reads

∆(P0) = 1⊗ P0 + P0 ⊗ 1, ∆(J) = 1⊗ J + J ⊗ 1,

∆(Pi ) = e−
z
2
P0 cosh( z

2

√
ωJ)⊗ Pi + Pi ⊗ e

z
2
P0 cosh( z

2

√
ωJ)

+
√
ω e−

z
2
P0 sinh( z

2

√
ωJ)⊗ εijKj −

√
ω εijKj ⊗ e

z
2
P0 sinh( z

2

√
ωJ),

∆(Ki ) = e−
z
2
P0 cosh( z

2

√
ωJ)⊗ Ki + Ki ⊗ e

z
2
P0 cosh( z

2

√
ωJ)

−e−
z
2
P0

sinh( z
2

√
ωJ)

√
ω

⊗ εijPj + εijPj ⊗ e
z
2
P0

sinh( z
2

√
ωJ)

√
ω

,

[J,Pi ] = εijPj , [J,Ki ] = εijKj , [J,P0] = 0,

[Pi ,Kj ] = −δij
sinh(zP0)

z
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√
ωJ), [P0,Ki ] = −Pi ,
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z
√
ω
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√
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18
A.B., F.J. Herranz, M.A. del Olmo, M. Santander, J. Phys. A 27 (1994) 1283.
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Quantum κ-AdSω algebra in (2+1)

This is exactly the quantum (A)dS algebra introduced in 19 as the
symmetry algebra of the vacuum excitations in (2+1) quantum gravity.

Quantum Casimir invariants read

Cz = 4 cos(z
√
ω)

(
sinh2( z

2
P0)

z2
cosh2

`
z
2

√
ωJ
´

+
sinh2( z

2

√
ωJ)

z2
cosh2

`
z
2
P0

´)

− sin(z
√
ω)

z
√
ω

“
P2 + ωK2

”
Wz = − cos(z

√
ω)

sinh(z
√
ωJ)

z
√
ω

sinh(zP0)

z
+

sin(z
√
ω)

z
√
ω

(K1P2 − K2P1).

Note that in AdSω momenta do not commute.

The AdSω dispersion relation coming from Cz would also include the
Lorentz sector.

The coproduct (addition) of momenta involves rotation and boosts.

19
G. Amelino-Camelia, L. Smolin, A. Starodubtsev, Class.Quant.Grav. (2004) 3095.
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Adding the twist induced by the DD

The twisted coproduct ∆ϑ,z is obtained by twisting the κ–AdSω coproduct
through an element Fϑ ∈ κ-AdSω ⊗ κ-AdSω:

∆ϑ,z(Y ) = Fϑ∆z(Y )F−1
ϑ , ∀Y ∈ κ-AdSω,

where
Fϑ = exp(−ϑJ ∧ P0).

The twist Fϑ satisfies the so-called twisting co-cycle and normalisation
conditions

Fϑ,12(∆z ⊗ id)Fϑ = Fϑ,23(id⊗∆z)Fϑ , (ε⊗ id)Fϑ = 1 = (id⊗ ε)Fϑ .

In this way we obtain (full expressions can be found in 20):

20
A.B. , F.J. Herranz, C. Meusburger, P. Naranjo, SIGMA 10 (2014) 052
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Adding the twist induced by the DD
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ωJ) sin(ϑ

√
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ωJ) sin(ϑ

√
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√
ωJ)

ˆ
cos(ϑ

√
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˜
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√
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√
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√
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√
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√
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ωJ) sin(ϑP0)− e

− z
2

P0 sinh( z
2

√
ωJ) sin(ϑ

√
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2
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√
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√
ω e
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ωJ) cos(ϑP0)− 1]⊗ εijKj
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P0 sinh( z
2

√
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ˆ
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√
ωJ) cos(ϑP0)− 1
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.

But commutation rules are left unchanged.
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4. The Snyder–type deformation
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First order deformation

The canonical classical r-matrix is

r ′ = ηJ0 ∧ J2 + 1
2

(−P0 ∧ J0 + P1 ∧ J1 + P2 ∧ J2) .

Again, we will multiply r ′ by the quantum double deformation parameter z and

δz(J0) = ηzJ1 ∧ J0, δz(J1) = 0, δz(J2) = ηzJ1 ∧ J2,

δz(P0) = z
“
P1 ∧ P2 + ηP1 ∧ J0 + η2J2 ∧ J1

”
,

δz(P1) = z
“
P0 ∧ P2 + ηP0 ∧ J0 − ηP2 ∧ J2 + η2J2 ∧ J0

”
,

δz(P2) = z
“
P1 ∧ P0 + ηP1 ∧ J2 + η2J0 ∧ J1

”
,

The cosmological constant is Λ = −η2.

The η → 0 limit gives a (simpler) twisted Poincaré algebra.
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First order non–commutative space–time

In terms of the dual basis (x̂a, θ̂a) (a = 0, 1, 2), we find that the first-order dual
Lie brackets among the spacetime coordinates are given by

[x̂0, x̂1] = −zx̂2, [x̂0, x̂2] = zx̂1, [x̂1, x̂2] = zx̂0.

This is a noncommutative spacetime of Snyder type.

The remaining first-order non-commutative relations between the quantum
spacetime and Lorentz parameters are

[θ̂0, θ̂1] = −ηz(θ̂0 − ηx̂2), [θ̂0, θ̂2] = −η2zx̂1, [θ̂1, θ̂2] = ηz(θ̂2 − ηx̂0),

[θ̂0, x̂0] = −ηzx̂1, [θ̂0, x̂1] = −ηzx̂0, [θ̂0, x̂2] = 0,

[θ̂1, x̂0] = 0, [θ̂1, x̂1] = 0, [θ̂1, x̂2] = 0,

[θ̂2, x̂0] = 0, [θ̂2, x̂1] = −ηzx̂2, [θ̂2, x̂2] = ηzx̂1.

Note that in the Poincaré limit all these relations vanish.
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All–orders Snyder nc spacetime deformation

From the Sklyanin bracket we get the PL brackets for the xa coordinates 21

{x0, x1} = −z
tanh ηx2

η
Υ,

{x0, x2} = z
tanh ηx1

η
Υ,

{x1, x2} = z
tan ηx0

η
Υ,

where Υ(x0, x1) = cos ηx0(cos ηx0 cosh ηx1 + sinh ηx1).

Therefore, we have a cosmological constant deformation of a ‘Snyder’
so(2, 1) nc spacetime, whose quantization is by no means trivial:

{x0, x1} = −z x2 − ηz x1x2 + η2z
“
x2

0 x2 − 1
2
x2

1 x2 + 1
3
x3

2

”
+ o[η3],

{x0, x2} = z x1 + ηzx2
1 − η2z

“
x2

0 x1 − 1
6
x3

1

”
+ o[η3],

{x1, x2} = z x0 + ηzx0x1 − η2z
“

2
3
x3

0 − 1
2
x2

1 x0

”
+ o[η3].

21
A.B., F.J. Herranz, C. Meusburger, Phys. Lett. B 732 (2014) 201 33 / 53
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5. Quantum AdSω in (3+1) dimensions
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The AdSω algebra in (3+1)

The (3+1)D AdSω Lie algebra:

[Ja, Jb] = εabcJc , [Ja,Pb] = εabcPc , [Ja,Kb] = εabcKc ,

[Ka,P0] = Pa , [Ka,Pb] = δabP0 , [Ka,Kb] = −εabcJc ,

[P0,Pa] = ωKa , [Pa,Pb] = −ωεabcJc , [P0, Ja] = 0 .

Explicilty, AdS3+1
ω comprises the three following Lorentzian spacetimes:

ω > 0,Λ < 0: AdS spacetime AdS3+1 ≡ SO(3, 2)/SO(3, 1).

ω < 0,Λ > 0: dS spacetime dS3+1 ≡ SO(4, 1)/SO(3, 1).

ω = Λ = 0: Minkowski spacetime M3+1 ≡ ISO(3, 1)/SO(3, 1).

Casimir operators:

C = P2
0 − P2 + ω

“
J2 −K2

”
W = W 2

0 −W2 + ω (J ·K)2

W0 = J · P Wa = −JaP0 + εabcKbPc
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ω = Λ = 0: Minkowski spacetime M3+1 ≡ ISO(3, 1)/SO(3, 1).

Casimir operators:

C = P2
0 − P2 + ω

“
J2 −K2

”
W = W 2

0 −W2 + ω (J ·K)2

W0 = J · P Wa = −JaP0 + εabcKbPc
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A Drinfel’d double structure for so(5)

Classical Lie algebra c2 generated by {ha, e±a} (a = 1, 2):

[h1, e±1] = ±e±1 , [h1, e±2] = ∓e±2 , [e+1, e−1] = h1 ,

[h2, e±1] = ∓e±1 , [h2, e±2] = ±2e±2 , [e+2, e−2] = h2 ,

[h1, h2] = 0 , [e−1, e+2] = 0 , [e+1, e−2] = 0 .

[e+1, e+2] := e+3 , [e−2, e−1] := e−3 ,

[e+1, e+3] := e+4 , [e−3, e−1] := e−4 .

The generators {ha, e±b} (a = 1, 2; b = 1, . . . , 4) span so(5)

e0 = − 1√
2
(J04 − iJ13) , f0 = 1√

2
(J04 + iJ13) ,

e1 = 1√
2
(J23 + iJ12) , f1 = − 1√

2
(J23 − iJ12) ,

e2 = 1
2

`
J01 − J34 − i(J03 + J14)

´
, f2 = − 1

2

`
J01 − J34 + i(J03 + J14)

´
,

e3 = 1√
2
(J24 + iJ02) , f3 = − 1√

2
(J24 − iJ02) ,

e4 = 1
2

`
J01 + J34 + i(J03 − J14)

´
, f4 = − 1

2

`
J01 + J34 − i(J03 − J14)

´
.

Let us consider fb ≡ e−b (b = 1, . . . , 4) and

e0 :=
1√
2

`
(1 + i)h1 + ih2

´
, f0 :=

1√
2

`
(1− i)h1 − ih2

´
.
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A Drinfel’d double structure for so(5)

We take the two Borel subalgebras as the DD subalgebras:

Xi ≡ e+i x i ≡ fi ≡ e−i , i = 0, . . . , 4 .

Therefore, so(5) is endowed with the following DD structure:

Canonical pairing

〈ei , ej〉 = 0 , 〈fi , fj〉 = 0 , 〈fi , ej〉 = δij , ∀i , j .

Casimir element

C =
1

2

X
i

(x i Xi + Xi x
i ) =

1

2

4X
i=0

(fiei + ei fi ) .

Canonical DD classical r -matrix

r =
X

i

x i ⊗ Xi =
4X

i=0

fi ⊗ ei , rskew =
1

2

X
i

x i ∧ Xi =
1

2

4X
i=0

fi ∧ ei .
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The DD structure for AdSω
Change of basis

P1 = i
√
ω J01 , P2 = i

√
ω J02 , P3 = i

√
ω J03 , P0 = −

√
ω J04 ,

K1 = iJ14 , K2 = iJ24 , K3 = iJ34 ,

J1 = J23 , J2 = −J13 , J3 = J12 .

Pairing and Casimir operator:

〈P0,P0〉ω = −ω, 〈Pa,Pb〉ω = ω δab, 〈Ka,Kb〉ω = δab, 〈Ja, Jb〉ω = −δab ,

Cω = ω C =
1

2

“ 3X
a=1

P2
a − P2

0 + ω

3X
a=1

“
K 2

a − J2
a

””
The DD classical r -matrices in (2+1) and (3+1)

rω ≡
√
ω rJ = z(K1 ∧ P1 + K2 ∧ P2 + K3 ∧ P3 +

√
ω J3 ∧ J1| {z }

κ-AdSω

+ P0 ∧ J2| {z }
twist

)

r2+1 = z (K1 ∧ P1 + K2 ∧ P2)| {z }
κ-AdSω

+ θJ ∧ P0| {z }
twist

.
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A DD quantum AdSω deformation

Cocommutator map in (3+1)

δ(P0) = 0 , δ(J2) = 0 ,

δ(J1) = z
`
P0 ∧ J3 +

√
ωJ1 ∧ J2

´
, δ(J3) = z

`
J1 ∧ P0 +

√
ωJ3 ∧ J2

´
,

δ(P1) = z
“

(P1 − P3) ∧ P0 + ω
`
J2 ∧ (K1 − K3) + J3 ∧ K2

´
+
√
ωJ1 ∧ P2

”
,

δ(P2) = z
“
P2 ∧ P0 + ω

`
J1 ∧ K3 + J2 ∧ K2 + K1 ∧ J3

´
+
√
ω
`
P1 ∧ J1 + P3 ∧ J3

´”
,

δ(P3) = z
“

(P1 + P3) ∧ P0 + ω
`
J2 ∧ (K1 + K3) + K2 ∧ J1

´
+
√
ωJ3 ∧ P2

”
,

δ(K1) = z
“`

K1 − K3

´
∧ P0 +

`
P1 − P3

´
∧ J2 + P2 ∧ J3 +

√
ωJ1 ∧ K2

”
,

δ(K2) = z
“
K2 ∧ P0 + J3 ∧ P1 + P2 ∧ J2 + P3 ∧ J1 +

√
ω
`
K1 ∧ J1 + K3 ∧ J3

´”
,

δ(K3) = z
“`

K1 + K3

´
∧ P0 +

`
P1 + P3

´
∧ J2 + J1 ∧ P2 +

√
ωJ3 ∧ K2

”
.

Note the strong effect of ω in the addition law for momenta.
The rotation subalgebra is also influenced by the twist.
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First–order noncommutative spacetime

First-order Poisson–Lie brackets defined by the 4-dimensional
spacetime PL subalgebra:

{x1, x0} = z
(
x1+x3

)
{x2, x0} = z x2,

{x3, x0} = z
(
x3−x1

)
,

{xa, xb} = 0, a, b = 1, 2, 3 .

This is nonisomorphic to (3+1) κ–Minkowski spacetime.

The x2 coordinate is distinguished.
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Restoring space isotropy

Space isotropy can be manifestly recovered in this DD quantum deformation
by considering the following automorphism of the AdSω algebra: 22

eY1 =
1√
6

Y1 +
1√
3

Y2 +
1√
2

Y3, Y1 =
1√
6

“eY1 + eY2 − 2eY3

”
,

eY2 =
1√
6

Y1 +
1√
3

Y2 −
1√
2

Y3, Y2 =
1√
3

“eY1 + eY2 + eY3

”
,

eY3 = − 2√
6

Y1 +
1√
3

Y2, Y3 =
1√
2

“eY1 − eY2

”
,

for Y ∈ {P,K, J}, eP0 = P0.

In this way, the classical r -matrix is transformed into

r̃ω = z

„
K̃1 ∧ P̃1 + K̃2 ∧ P̃2 + K̃3 ∧ P̃3 +

1√
3

P̃0 ∧
`
J̃1 + J̃2 + J̃3

´
+

√
ω√
3

`
J̃1 ∧ J̃2 + J̃2 ∧ J̃3 + J̃3 ∧ J̃1

´”

22
A.B., F.J. Herranz, P. Naranjo, Phys. Lett. B 746 (2015) 37
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Restoring space isotropy

The first-order noncommutative spacetime spanned by the dual
coordinates of the spacetime subalgebra reads

{xa, x0} = z

(
xa+

1√
3

(
xa+2 − xa+1

))
{xa, xb} = 0 a, b = 1, 2, 3 .
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Full quantum twisted AdSω algebra
Instead of considering

r = z
`
K1 ∧ P1 + K2 ∧ P2 + K3 ∧ P3 +

√
ωJ3 ∧ J1

´
+ P0 ∧ J2,

we take the equivalent AdSω deformation generated by

rz,ϑ = z
`
K1 ∧ P1 + K2 ∧ P2 + K3 ∧ P3 +

√
ωJ1 ∧ J2

´
+ ϑJ3 ∧ P0.

The Poisson analogue of the corresponding all-orders quantum algebra can
be explicitly computed by following the dual Poisson–Lie group approach
based in the quantum duality principle and presented in 23.

We end up with the following coproduct in a ‘bicrossproduct’ basis: 24

∆(P0) = P0 ⊗ 1 + 1⊗ P0, ∆(J3) = J3 ⊗ 1 + 1⊗ J3,

∆(J1) = J1 ⊗ ez
√
ωJ3 + cos(ϑP0)⊗ J1 + sin(ϑP0)⊗ J2,

∆(J2) = J2 ⊗ ez
√
ωJ3 + cos(ϑP0)⊗ J2 − sin(ϑP0)⊗ J1,

23
A.B., F. Musso, J. Phys. A: Math. Theor 46 (2013) 195203

24
A.B., F.J. Herranz, F. Musso, P. Naranjo, preprint (2015)
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Nonlinear composition of momenta

∆(P1) = P1 ⊗ cosh(z
√
ωJ3) cos(ϑ

√
ωJ3) + e−zP0 cos(ϑP0)⊗ P1

+P2 ⊗ sinh(z
√
ωJ3) sin(ϑ

√
ωJ3) + e−zP0 sin(ϑP0)⊗ P2

−
√
ωK2 ⊗ sinh(z

√
ωJ3) cos(ϑ

√
ωJ3) +

√
ωK1 ⊗ cosh(z

√
ωJ3) sin(ϑ

√
ωJ3)

−z
√
ω
ˆ
(P3 ⊗ J1 −

√
ωK3 ⊗ J2)Cϑ(P0, J3) + (P3 ⊗ J2 +

√
ωK3 ⊗ J1)Sϑ(P0, J3)

˜
+

z2ω

2

h
2(
√
ωK1 − P2)⊗ J1J2e−z

√
ωJ3 − (

√
ωK2 + P1)⊗ (J2

1 − J2
2 )e−z

√
ωJ3
i eCϑ(P0, J3)

−
z2ω

2

h
2(
√
ωK2 + P1)⊗ J1J2e−z

√
ωJ3 + (

√
ωK1 − P2)⊗ (J2

1 − J2
2 )e−z

√
ωJ3
i eSϑ(P0, J3),

∆(P2) = P2 ⊗ cosh(z
√
ωJ3) cos(ϑ

√
ωJ3) + e−zP0 cos(ϑP0)⊗ P2

−P1 ⊗ sinh(z
√
ωJ3) sin(ϑ

√
ωJ3)− e−zP0 sin(ϑP0)⊗ P1

+
√
ωK1 ⊗ sinh(z

√
ωJ3) cos(ϑ

√
ωJ3) +

√
ωK2 ⊗ cosh(z

√
ωJ3) sin(ϑ

√
ωJ3)

−z
√
ω
ˆ
(P3 ⊗ J2 +

√
ωK3 ⊗ J1)Cϑ(P0, J3)− (P3 ⊗ J1 −

√
ωK3 ⊗ J2)Sϑ(P0, J3)

˜
−

z2ω

2

h
2(
√
ωK2 + P1)⊗ J1J2e−z

√
ωJ3 + (

√
ωK1 − P2)⊗ (J2

1 − J2
2 )e−z

√
ωJ3
i eCϑ(P0, J3)

−
z2ω

2

h
2(
√
ωK1 − P2)⊗ J1J2e−z

√
ωJ3 − (

√
ωK2 + P1)⊗ (J2

1 − J2
2 )e−z

√
ωJ3
i eSϑ(P0, J3),

∆ (P3) = e−zP0 ⊗ P3 + P3 ⊗ cos(ϑ
√
ωJ3) +

√
ωK3 ⊗ sin(ϑ

√
ωJ3)

+z
√
ω
h

(
√
ωK2 + P1)⊗ J1e−z

√
ωJ3 − (

√
ωK1 − P2)⊗ J2e−z

√
ωJ3
i

Cϑ(P0, J3)

+z
√
ω
h

(
√
ωK2 + P1)⊗ J2e−z

√
ωJ3 + (

√
ωK1 − P2)⊗ J1e−z

√
ωJ3
i

Sϑ(P0, J3),
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Quantum commutation rules

{J1, J2} =
e2z
√
ωJ3 − 1

2z
√
ω

− z
√
ω

2

“
J2

1 + J2
2

”
, {J1, J3} = −J2, {J2, J3} = J1,

{J1,P1} = z
√
ωJ1P2, {J1,P2} = P3 − z

√
ωJ1P1, {J1,P3} = −P2,

{J2,P1} = −P3 + z
√
ωJ2P2, {J2,P2} = −z

√
ωJ2P1, {J2,P3} = P1,

{J3,P1} = P2, {J3,P2} = −P1, {J3,P3} = 0,

{J1,K1} = z
√
ωJ1K2, {J1,K2} = K3 − z

√
ωJ1K1, {J1,K3} = −K2,

{J2,K1} = −K3 + z
√
ωJ2K2, {J2,K2} = −z

√
ωJ2K1, {J2,K3} = K1,

{J3,K1} = K2, {J3,K2} = −K1, {J3,K3} = 0,

{Ka,P0} = Pa, {P0,Pa} = ωKa, {P0, Ja} = 0,
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Quantum commutation rules

{K1, P1} =
1

2z

“
cosh(2z

√
ωJ3)− e−2zP0

”
+

z3ω2

4
e−2z

√
ωJ3

“
J2

1 + J2
2

”2
+

z

2

“
P2

2 + P2
3 − P2

1

”
+

zω

2

h
K2

2 + K2
3 − K2

1 + J2
1

“
1− e−2z

√
ωJ3
”

+ J2
2

“
1 + e−2z

√
ωJ3
”i
,

{K2, P2} =
1

2z

“
cosh(2z

√
ωJ3)− e−2zP0

”
+

z3ω2

4
e−2z

√
ωJ3

“
J2

1 + J2
2

”2
−

z

2

“
P2

1 + P2
3 − P2

2

”
+

zω

2

h
K2

1 + K2
3 − K2

2 + J2
1

“
1 + e−2z

√
ωJ3
”

+ J2
2

“
1− e−2z

√
ωJ3
”i
,

{K3, P3} =
1− e−2zP0

2z
+

z

2

h
(P1 +

√
ωK2)2 + (P2 −

√
ωK1)2 − P2

3 − ωK2
3

i
+zωe−2z

√
ωJ3

“
J2

1 + J2
2

”
,

{P1,K2} = z
“
P1P2 + ωK1K2 −

√
ωP3K3 + ωJ1J2e−2z

√
ωJ3
”
,

{P2,K1} = z
“
P1P2 + ωK1K2 +

√
ωP3K3 + ωJ1J2e−2z

√
ωJ3
”
,

{P1,K3} =
1

2

√
ωJ1

“
1− e−2z

√
ωJ3

h
1− z2

ω
“
J2

1 + J2
2

”i”
+ z

`
P1P3 + ωK1K3 +

√
ωK2P3

´
,

{P3,K1} =
1

2

√
ωJ1

“
1− e−2z

√
ωJ3

h
1− z2

ω
“
J2

1 + J2
2

”i”
+ z

`
P1P3 + ωK1K3 −

√
ωP2K3

´
,

{P2,K3} =
1

2

√
ωJ2

“
1− e−2z

√
ωJ3

h
1− z2

ω
“
J2

1 + J2
2

”i”
+ z

`
P2P3 + ωK2K3 −

√
ωK1P3

´
,

{P3,K2} =
1

2

√
ωJ2

“
1− e−2z

√
ωJ3

h
1− z2

ω
“
J2

1 + J2
2

”i”
+ z

`
P2P3 + ωK2K3 +

√
ωP1K3

´
,
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Quantum commutation rules

{K1,K2} = −
sinh(2z

√
ωJ3)

2z
√
ω

−
z
√
ω

2

`
J2

1 + J2
2 + 2K2

3

´
−

z3ω3/2

4
e−2z

√
ωJ3

`
J2

1 + J2
2

´2

{K1,K3} =
1

2
J2

“
1 + e−2z

√
ωJ3

ˆ
1 + z2ω

`
J2

1 + J2
2

´˜”
+ z
√
ωK2K3

{K2,K3} = −
1

2
J1

“
1 + e−2z

√
ωJ3

ˆ
1 + z2ω

`
J2

1 + J2
2

´˜”
− z
√
ωK1K3

{P1,P2} = −ω
sinh(2z

√
ωJ3)

2z
√
ω

−
z
√
ω

2

`
2P2

3 + ω(J2
1 + J2

2 )
´
−

z3ω5/2

4
e−2z

√
ωJ3

`
J2

1 + J2
2

´2

{P1,P3} =
1

2
ωJ2

“
1 + e−2z

√
ωJ3

ˆ
1 + z2ω

`
J2

1 + J2
2

´˜”
+ z
√
ωP2P3

{P2,P3} = −
1

2
ωJ1

“
1 + e−2z

√
ωJ3

ˆ
1 + z2ω

`
J2

1 + J2
2

´˜”
− z
√
ωP1P3
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Quantum casimir

The Poisson–deformed counterpart of the second-order Casimir reads

C =
2

z2

ˆ
cosh(zP0) cosh(z

√
ωJ3)− 1

˜
+ ω cosh(zP0)(J2

1 + J2
2 )e−z

√
ωJ3

−ezP0

“
P2 + ωK2

”»
cosh(z

√
ωJ3) +

z2ω

2
(J2

1 + J2
2 )e−z

√
ωJ3

–
+2ωezP0

»
sinh(z

√
ωJ3)√
ω

R3 + z

„
J1R1 + J2R2 +

z
√
ω

2
(J2

1 + J2
2 )R3

«
e−z
√
ωJ3

–
,

where Ra = εabcKbPc .

In the z → 0 limit, we obtain

C = P2
0 − P2 + ω

“
J2 −K2

”
.

In the ω → 0 limit, we obtain the κ-Poincaré quantum Casimir in the
bicrossproduct basis:

C =
2

z2
[cosh(zP0)− 1]− ezP0 P2 =

4

z2
sinh2(zP0/2)− ezP0 P2
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The twisted κ–Poincaré algebra in (3+1)
When ω → 0 we get a twisted κ-Poincaré algebra 25 26 27 generated by

rz,ϑ = z (K1 ∧ P1 + K2 ∧ P2 + K3 ∧ P3) + ϑJ3 ∧ P0.

∆(P0) = P0 ⊗ 1 + 1⊗ P0, ∆(J3) = J3 ⊗ 1 + 1⊗ J3,

∆(J1) = J1 ⊗ 1 + cos(ϑP0)⊗ J1 + sin(ϑP0)⊗ J2,

∆(J2) = J2 ⊗ 1 + cos(ϑP0)⊗ J2 − sin(ϑP0)⊗ J1,

∆(P1) = P1 ⊗ 1 + e−zP0 cos(ϑP0)⊗ P1 + e−zP0 sin(ϑP0)⊗ P2,

∆(P2) = P2 ⊗ 1 + e−zP0 cos(ϑP0)⊗ P2 − e−zP0 sin(ϑP0)⊗ P1,

∆(P3) = P3 ⊗ 1 + e−zP0 ⊗ P3,

∆(K1) = K1 ⊗ 1 + e−zP0 cos(ϑP0)⊗ K1 + e−zP0 sin(ϑP0)⊗ K2

+zP2 ⊗ J3 − ϑP1 ⊗ J3 − z (P3 cos(ϑP0)⊗ J2 − P3 sin(ϑP0)⊗ J1) ,

∆(K2) = K2 ⊗ 1 + e−zP0 cos(ϑP0)⊗ K2 − e−zP0 sin(ϑP0)⊗ K1

−zP1 ⊗ J3 − ϑP2 ⊗ J3 + z (P3 cos(ϑP0)⊗ J1 + P3 sin(ϑP0)⊗ J2) ,

∆(K3) = K3 ⊗ 1 + e−zP0 ⊗ K3 − ϑP3 ⊗ J3

+z (P1 cos(ϑP0)⊗ J2 − P2 cos(ϑP0)⊗ J1)

−z (P1 sin(ϑP0)⊗ J1 + P2 sin(ϑP0)⊗ J2) .

25
J. Lukierski and V. Lyakhovsky, Math. Phys. Contemp. Math. 391 (2005) 281

26
M.Daszkiewicz, Int. J. Mod. Phys A 23 (2008) 4387

27
A. Borowiec and A. Pachol, SIGMA 10 (2014) 107 49 / 53
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The twisted κ–Poincaré algebra

Deformed commutation rules are given by

{Ja, Jb} = εabcJc , {Ja,Pb} = εabcPc , {Ja,Kb} = εabcKc ,

{Ka,P0} = Pa, {Ka,Kb} = −εabcJc , {P0, Ja} = 0,

{P0,Pa} = 0, {Pa,Pb} = 0,

{Ka,Pb} = δab

„
1

2z

“
1− e−2zP0

”
+

z

2
P2

«
− zPaPb,

The deformed quadratic Casimir reduces to

C =
2

z2
[cosh(zP0)− 1]− ezP0 P2 =

4

z2
sinh2(zP0/2)− ezP0 P2.

All these expressions correspond to the (twisted) κ-Poincaré algebra in the
bicrossproduct basis. 28

28
S. Majid, H. Ruegg, Phys. Lett. B 334 (1994) 348
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6. Conclusions
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Conclusions

Quantum gravity models with cosmological constant should be
considered in order to describe the interplay between quantum effects and
cosmology. 29 30 31

Quantum groups with cosmological constant incorporate many new
features with respect to the flat (Poincaré) deformations:

The cosmological constant would modify in an essential way both the
associated dispersion relations and curved momentum spaces. 32 33

The role of twists seems to be outstanding in the DD setting. The (A)dS
κ-deformation has to be enlarged by a twist in order to be consistent
with a DD structure.

This DD construction can be fully extended to (3+1) dimensions. 34

29
A.B., F.J. Herranz, N.R. Bruno, arXiv:hep-th/0401244 (2004).

30
A. Marciano, G. Amelino-Camelia, N.R. Bruno, G. Gubitosi, G. Mandanici, A. Melchiorri, J. Cosmol.

Astropart. Phys. B 06 (2010) 030
31

G. Amelino-Camelia G, Living Rev. Rel. 16 (2013), 5
32

J. Kowalski-Glikman, Phys. Lett. B 547 (2002) 291
33

L. Freidel, J. Kowalski-Glikman, L. Smolin, Phys. Rev. D 69 (2004) 044001
34

A.B., F.J. Herranz, P. Naranjo, Phys. Lett. B 746 (2015) 37
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For detailed proofs and bibliography see
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