Symmetry reductions in loop quantum gravity

based on classical gauge fixings

Norbert Bodendorfer
University of Warsaw
based on 1410.5608 (PRD) and
1410.5609 (PLB) (with J. Lewandowski and J. Świeżewski)
XXXV Max Born Symposium: The Planck Scale II

10.09.2015

Plan of the talk

(1) Approaches to symmetry reductions
(2) General strategy
(3) Bianchi I: Details on classical derivation
(4) Bianchi I: Details on quantum theory
(5) Spherical symmetry (sketch)
(6) Conclusion

Outline

(1) Approaches to symmetry reductions
(2) General strategy
(3) Bianchi I: Details on classical derivation
(4) Bianchi I: Details on quantum theory
(5) Spherical symmetry (sketch)

6 Conclusion

Proposals for a symmetry reduced quantum theory in LQG

Proposals for a symmetry reduced quantum theory in LQG

- Mini / midi-superspace quantisation
- LQC [Bojowald '99-; Ashtekar, Bojowald, Lewandowski '03; ...]
- Schwarzschild black hole [Kastrup, Thiemann '93; Kuchař '94, Gambini, Pullin '13]
- Spherical symmetry [Bojowald, Kastrup '99, ..., Bojowald, Swiderski '04, ...]
- More on spherical symmetry [Alvarez, Capurro, Gambini, Pullin, Olmedo, Rastgoo ...]

Proposals for a symmetry reduced quantum theory in LQG

- Mini / midi-superspace quantisation
- LQC [Bojowald '99-; Ashtekar, Bojowald, Lewandowski '03; ...]
- Schwarzschild black hole [Kastrup, Thiemann '93; Kuchař '94, Gambini, Pullin '13]
- Spherical symmetry [Bojowald, Kastrup '99, ..., Bojowald, Swiderski '04, ...]
- More on spherical symmetry [Alvarez, Capurro, Gambini, Pullin, Olmedo, Rastgoo ...]
- Approximately symmetric spin networks
- Weave states [Ashtekar, Rovelli, Smolin '92; Bombelli '00]
- Spinfoam cosmology [Bianchi, Rovelli, Vidotto '10-; Kisielowski, Lewandowski, Puchta '12]
- Canonical Bianchi I, reduced states [Alesci, Cianfrani '12-; Pawłowski '14]

Proposals for a symmetry reduced quantum theory in LQG

- Mini / midi-superspace quantisation
- LQC [Bojowald '99-; Ashtekar, Bojowald, Lewandowski '03; ...]
- Schwarzschild black hole [Kastrup, Thiemann '93; Kuchař '94, Gambini, Pullin '13]
- Spherical symmetry [Bojowald, Kastrup '99, ..., Bojowald, Swiderski '04, ...]
- More on spherical symmetry [Alvarez, Capurro, Gambini, Pullin, Olmedo, Rastgoo ...]
- Approximately symmetric spin networks
- Weave states [Ashtekar, Rovelli, Smolin '92; Bombelli '00]
- Spinfoam cosmology [Bianchi, Rovelli, Vidotto '10-; Kisielowski, Lewandowski, Puchta '12]
- Canonical Bianchi I, reduced states [Alesci, Cianfrani '12-; Pawłowski '14]
- Study of symmetric connections
- Quantisation \leftrightarrow reduction [Bojowald '04; Engle '05; Hanusch '13]
- Embedding of states [Engle '07; Brunnemann, Fleischhack '07; Fleischhack '10]

Proposals for a symmetry reduced quantum theory in LQG

- Mini / midi-superspace quantisation
- LQC [Bojowald '99-; Ashtekar, Bojowald, Lewandowski '03; ...]
- Schwarzschild black hole [Kastrup, Thiemann '93; Kuchař '94, Gambini, Pullin '13]
- Spherical symmetry [Bojowald, Kastrup '99, ..., Bojowald, Swiderski '04, ...]
- More on spherical symmetry [Alvarez, Capurro, Gambini, Pullin, Olmedo, Rastgoo ...]
- Approximately symmetric spin networks
- Weave states [Ashtekar, Rovelli, Smolin '92; Bombelli '00]
- Spinfoam cosmology [Bianchi, Rovelli, Vidotto '10-; Kisielowski, Lewandowski, Puchta '12]
- Canonical Bianchi I, reduced states [Alesci, Cianfrani '12-; Pawłowski '14]
- Study of symmetric connections
- Quantisation \leftrightarrow reduction [Bojowald '04; Engle '05; Hanusch '13]
- Embedding of states [Engle '07; Brunnemann, Fleischhack '07; Fleischhack '10]
- Condensate states
- GFT [Gielen, Oriti, Sindoni '13-; Calcagni '14, ...]

Proposals for a symmetry reduced quantum theory in LQG

- Mini / midi-superspace quantisation
- LQC [Bojowald '99-; Ashtekar, Bojowald, Lewandowski '03; ...]
- Schwarzschild black hole [Kastrup, Thiemann '93; Kuchař '94, Gambini, Pullin '13]
- Spherical symmetry [Bojowald, Kastrup '99, ..., Bojowald, Swiderski '04, ...]
- More on spherical symmetry [Alvarez, Capurro, Gambini, Pullin, Olmedo, Rastgoo ...]
- Approximately symmetric spin networks
- Weave states [Ashtekar, Rovelli, Smolin '92; Bombelli '00]
- Spinfoam cosmology [Bianchi, Rovelli, Vidotto '10-; Kisielowski, Lewandowski, Puchta '12]
- Canonical Bianchi I, reduced states [Alesci, Cianfrani '12-; Pawłowski '14]
- Study of symmetric connections
- Quantisation \leftrightarrow reduction [Bojowald '04; Engle '05; Hanusch '13]
- Embedding of states [Engle '07; Brunnemann, Fleischhack '07; Fleischhack '10]
- Condensate states
- GFT [Gielen, Oriti, Sindoni '13-; Calcagni '14, ...]
- Group averaging w.r.t. symmetry generator at quantum level
- Spherical symmetry [NB, Lewandowski, Świeżewski '14]

Proposals for a symmetry reduced quantum theory in LQG

- Mini / midi-superspace quantisation
- LQC [Bojowald '99-; Ashtekar, Bojowald, Lewandowski '03; ...]
- Schwarzschild black hole [Kastrup, Thiemann '93; Kuchař '94, Gambini, Pullin '13]
- Spherical symmetry [Bojowald, Kastrup '99, ..., Bojowald, Swiderski '04, ...]
- More on spherical symmetry [Alvarez, Capurro, Gambini, Pullin, Olmedo, Rastgoo ...]
- Approximately symmetric spin networks
- Weave states [Ashtekar, Rovelli, Smolin '92; Bombelli '00]
- Spinfoam cosmology [Bianchi, Rovelli, Vidotto '10-; Kisielowski, Lewandowski, Puchta '12]
- Canonical Bianchi I, reduced states [Alesci, Cianfrani '12-; Pawłowski '14]
- Study of symmetric connections
- Quantisation \leftrightarrow reduction [Bojowald '04; Engle '05; Hanusch '13]
- Embedding of states [Engle '07; Brunnemann, Fleischhack '07; Fleischhack '10]
- Condensate states
- GFT [Gielen, Oriti, Sindoni '13-; Calcagni '14, ...]
- Group averaging w.r.t. symmetry generator at quantum level
- Spherical symmetry [NB, Lewandowski, Świezeewski '14]
- Code symmetry as $f(p, q)=0$, impose $\widehat{f(p, q)}|\Psi\rangle_{\text {sym }}=0 \leftarrow$ this talk
- Bianchi I models [NB '14]
- Spherical symmetry [NB, Lewandowski, Świeżewski '14]

Outline

(1) Approaches to symmetry reductions

(2) General strategy
(3) Bianchi I: Details on classical derivation

4 Bianchi I: Details on quantum theory
(5) Spherical symmetry (sketch)

6 Conclusion

Recipe for canonical loop quantisation

Hamiltonian connection formulation of a gravitational theory

Metric \rightarrow connection with gauge symmetry under a local gauge group (e.g. SU(2))

+ certain mathematical properties (avoid with new vacua? [Dittrich, Geiller '14; Bahr, Dittrich, Geiller '15])
- compact gauge group
- real variables
- canonical Poisson brackets

O only first class constraints for Dirac quantisation (otherwise e.g. Gupta-Bleuler as in EPRL model, or Master constraint)

Recipe for canonical loop quantisation

Hamiltonian connection formulation of a gravitational theory

Metric \rightarrow connection with gauge symmetry under a local gauge group (e.g. SU(2))

+ certain mathematical properties (avoid with new vacua? [Dittrich, Geiller '14; Bahr, Dittrich, Geiller '15])
- compact gauge group
- real variables
- canonical Poisson brackets
- only first class constraints for Dirac quantisation (otherwise e.g. Gupta-Bleuler as in EPRL model, or Master constraint)

Kinematically quantised gravitational theory
 [Rovelli, Smolin, Ashtekar, Isham, Lewandowski, Marolf, Mourao, Thiemann, Sahlmann, ...]

- Regularise Hamiltonian constraint [Thiemann '96; ...]
- Compute quantum constraint algebra [Thiemann '96; ...; Varadarajan, Laddha et al. '11-]

General strategy for the symmetry reduction

(1) Suitable classical starting point

- Gauge fix spatial diffeomorphisms adapted to the symmetry reduction
- Go to the reduced phase space, i.e. solve constraints or employ Dirac bracket
- Find new connection variables on $\Gamma_{\text {red }}$ (not Ashtekar-Barbero variables)

General strategy for the symmetry reduction

(1) Suitable classical starting point

- Gauge fix spatial diffeomorphisms adapted to the symmetry reduction
- Go to the reduced phase space, i.e. solve constraints or employ Dirac bracket
- Find new connection variables on $\Gamma_{\text {red }}$ (not Ashtekar-Barbero variables)
(2) Identification of constraints imposed by symmetry reduction
- Find phase space functions $f_{i}(p, q)=0$ in the symmetric subspace
- $f_{i}=0$ may be a first or second class set of constraints
- Later, choose first class subset via gauge unfixing (\rightarrow Dirac quantisation)

General strategy for the symmetry reduction

(1) Suitable classical starting point

- Gauge fix spatial diffeomorphisms adapted to the symmetry reduction
- Go to the reduced phase space, i.e. solve constraints or employ Dirac bracket
- Find new connection variables on $\Gamma_{\text {red }}$ (not Ashtekar-Barbero variables)
(2) Identification of constraints imposed by symmetry reduction
- Find phase space functions $f_{i}(p, q)=0$ in the symmetric subspace
- $f_{i}=0$ may be a first or second class set of constraints
- Later, choose first class subset via gauge unfixing (\rightarrow Dirac quantisation)
(3) Quantise the reduced phase space via LQG techniques
- At this point, still full GR (if accessible by the gauge fixing)
- At this point, no (full) spatial diffeomorphism constraint at quantum level

General strategy for the symmetry reduction

(1) Suitable classical starting point

- Gauge fix spatial diffeomorphisms adapted to the symmetry reduction
- Go to the reduced phase space, i.e. solve constraints or employ Dirac bracket
- Find new connection variables on $\Gamma_{\text {red }}$ (not Ashtekar-Barbero variables)
(2) Identification of constraints imposed by symmetry reduction
- Find phase space functions $f_{i}(p, q)=0$ in the symmetric subspace
- $f_{i}=0$ may be a first or second class set of constraints
- Later, choose first class subset via gauge unfixing (\rightarrow Dirac quantisation)
(3) Quantise the reduced phase space via LQG techniques
- At this point, still full GR (if accessible by the gauge fixing)
- At this point, no (full) spatial diffeomorphism constraint at quantum level
(4) Impose reduction conditions $f_{i}=0$ as operator equations: $\hat{f}_{i}|\Psi\rangle_{\text {sym }}=0$
- Find subspace of quantum reduced states $|\Psi\rangle_{\text {sym }}$
- Find observables $\hat{\mathcal{O}}_{\text {sym }}$ w.r.t. reduction constraints: $\left[\hat{\mathcal{O}}_{\text {sym }}, \hat{f}_{i}\right]=0$

General strategy for the symmetry reduction

(1) Suitable classical starting point

- Gauge fix spatial diffeomorphisms adapted to the symmetry reduction
- Go to the reduced phase space, i.e. solve constraints or employ Dirac bracket
- Find new connection variables on $\Gamma_{\text {red }}$ (not Ashtekar-Barbero variables)
(2) Identification of constraints imposed by symmetry reduction
- Find phase space functions $f_{i}(p, q)=0$ in the symmetric subspace
- $f_{i}=0$ may be a first or second class set of constraints
- Later, choose first class subset via gauge unfixing (\rightarrow Dirac quantisation)
(3) Quantise the reduced phase space via LQG techniques
- At this point, still full GR (if accessible by the gauge fixing)
- At this point, no (full) spatial diffeomorphism constraint at quantum level
(4) Impose reduction conditions $f_{i}=0$ as operator equations: $\hat{f}_{i}|\Psi\rangle_{\text {sym }}=0$
- Find subspace of quantum reduced states $|\Psi\rangle_{\text {sym }}$
- Find observables $\hat{\mathcal{O}}_{\text {sym }}$ w.r.t. reduction constraints: $\left[\hat{\mathcal{O}}_{\text {sym }}, \hat{f}_{i}\right]=0$
(5) Relate observables $\hat{\mathcal{O}}_{\text {sym }}$ to mini- / midisuperspace parameters
- Map observables
- Study dynamics

Outline

(1) Approaches to symmetry reductions

(2) General strategy
(3) Bianchi I: Details on classical derivation
(4) Bianchi I: Details on quantum theory
(5) Spherical symmetry (sketch)
(6) Conclusion

Classical preparations I: Phase space

Gauge fixing to obtain suitable coordinates
(1) Start with ADM phase space $\quad\left\{q_{a b}(\sigma), P^{c d}\left(\sigma^{\prime}\right)\right\}=\delta^{(3)}\left(\sigma, \sigma^{\prime}\right) \delta_{(a}^{c} \delta_{b)}^{d}$
(2) Impose diagonal metric gauge $q_{a \neq b}=0 \Leftrightarrow q=\operatorname{diag}\left(q_{x x}, q_{y y}, q_{z z}\right)$

Classical preparations I: Phase space

Gauge fixing to obtain suitable coordinates
(1) Start with ADM phase space $\quad\left\{q_{a b}(\sigma), P^{c d}\left(\sigma^{\prime}\right)\right\}=\delta^{(3)}\left(\sigma, \sigma^{\prime}\right) \delta_{(a}^{c} \delta_{b)}^{d}$
(2) Impose diagonal metric gauge $q_{a \neq b}=0 \Leftrightarrow q=\operatorname{diag}\left(q_{x x}, q_{y y}, q_{z z}\right)$
(3) Gauge fixes the spatial diffeomorphism constraint $N^{a} C_{a}=-2 N^{a} \nabla_{b} P^{b}{ }_{a}=0$ (up to reduced spatial diffeomorphisms with shift vector $\vec{N}=\left(N^{x}(x), N^{y}(y), N^{z}(z)\right)$)

Classical preparations I: Phase space

Gauge fixing to obtain suitable coordinates

(1) Start with ADM phase space $\left\{q_{a b}(\sigma), P^{c d}\left(\sigma^{\prime}\right)\right\}=\delta^{(3)}\left(\sigma, \sigma^{\prime}\right) \delta_{(a}^{c} \delta_{b)}^{d}$
(2) Impose diagonal metric gauge $q_{a \neq b}=0 \Leftrightarrow q=\operatorname{diag}\left(q_{x x}, q_{y y}, q_{z z}\right)$
(3) Gauge fixes the spatial diffeomorphism constraint $N^{a} C_{a}=-2 N^{a} \nabla_{b} P^{b}{ }_{a}=0$ (up to reduced spatial diffeomorphisms with shift vector $\vec{N}=\left(N^{x}(x), N^{y}(y), N^{z}(z)\right)$)
(9) Coordinatise the reduced phase space via $q_{x x}, q_{y y}, q_{z z}, P^{x x}, P^{y y}, P^{z z}$
(5) Solve $C_{a}=0$ for $P^{a \neq b} \Rightarrow P^{a \neq b}\left(q_{a a}, P^{b b}\right) \quad \Rightarrow$ insert in Hamiltonian

Classical preparations I: Phase space

Gauge fixing to obtain suitable coordinates

(1) Start with ADM phase space $\left\{q_{a b}(\sigma), P^{c d}\left(\sigma^{\prime}\right)\right\}=\delta^{(3)}\left(\sigma, \sigma^{\prime}\right) \delta_{(a}^{c} \delta_{b)}^{d}$
(2) Impose diagonal metric gauge $q_{a \neq b}=0 \Leftrightarrow q=\operatorname{diag}\left(q_{x x}, q_{y y}, q_{z z}\right)$
(3) Gauge fixes the spatial diffeomorphism constraint $N^{a} C_{a}=-2 N^{a} \nabla_{b} P^{b}{ }_{a}=0$ (up to reduced spatial diffeomorphisms with shift vector $\vec{N}=\left(N^{\star}(x), N^{y}(y), N^{2}(z)\right)$)
(9) Coordinatise the reduced phase space via $q_{x x}, q_{y y}, q_{z z}, P^{x x}, P^{x y}, P^{z z}$
(5) Solve $C_{a}=0$ for $P^{a \neq b} \quad \Rightarrow \quad P^{a \neq b}\left(q_{a a}, P^{b b}\right) \quad \Rightarrow \quad$ insert in Hamiltonian

Choose connection type variables

(1) Define $e_{a} e_{a}=q_{a a}, e_{a} e^{a}=1$, without summation, and $E^{a}=\sqrt{\operatorname{det} q} e^{a}$
(2) Define $K_{a}=K_{a b} e^{b}$ with $K_{a b}$ being the extrinsic curvature constructed form $P^{a b}$
(3) Compute new Poisson brackets: $\left\{K_{a}(\sigma), E^{b}\left(\sigma^{\prime}\right)\right\}=\delta^{(3)}\left(\sigma, \sigma^{\prime}\right) \delta_{a}^{b}$

Classical preparations I: Phase space

Gauge fixing to obtain suitable coordinates

(1) Start with ADM phase space $\left\{q_{a b}(\sigma), P^{c d}\left(\sigma^{\prime}\right)\right\}=\delta^{(3)}\left(\sigma, \sigma^{\prime}\right) \delta_{(a}^{c} \delta_{b)}^{d}$
(2) Impose diagonal metric gauge $q_{a \neq b}=0 \Leftrightarrow q=\operatorname{diag}\left(q_{x x}, q_{y y}, q_{z z}\right)$
(3) Gauge fixes the spatial diffeomorphism constraint $N^{a} C_{a}=-2 N^{a} \nabla_{b} P^{b}{ }_{a}=0$ (up to reduced spatial diffeomorphisms with shift vector $\vec{N}=\left(N^{\star}(x), N^{y}(y), N^{2}(z)\right)$)
(9) Coordinatise the reduced phase space via $q_{x x}, q_{y y}, q_{z z}, P^{x x}, P^{y y}, P^{z z}$
(5) Solve $C_{a}=0$ for $P^{a \neq b} \Rightarrow P^{a \neq b}\left(q_{a a}, P^{b b}\right) \quad \Rightarrow$ insert in Hamiltonian

Choose connection type variables

(1) Define $e_{a} e_{a}=q_{a a}, e_{a} e^{a}=1$, without summation, and $E^{a}=\sqrt{\operatorname{det} q} e^{a}$
(2) Define $K_{a}=K_{a b} e^{b}$ with $K_{a b}$ being the extrinsic curvature constructed form $P^{a b}$
(3) Compute new Poisson brackets: $\left\{K_{a}(\sigma), E^{b}\left(\sigma^{\prime}\right)\right\}=\delta^{(3)}\left(\sigma, \sigma^{\prime}\right) \delta_{a}^{b}$
(4) K_{a}, E^{b} are like Ashtekar-Barbero variables without internal indices
\Rightarrow Abelian gauge theory (Poisson bracket of Maxwell theory)

Classical preparations I: Phase space

Gauge fixing to obtain suitable coordinates

(1) Start with ADM phase space $\left\{q_{a b}(\sigma), P^{c d}\left(\sigma^{\prime}\right)\right\}=\delta^{(3)}\left(\sigma, \sigma^{\prime}\right) \delta_{(a}^{c} \delta_{b)}^{d}$
(2) Impose diagonal metric gauge $q_{a \neq b}=0 \Leftrightarrow q=\operatorname{diag}\left(q_{x x}, q_{y y}, q_{z z}\right)$
(3) Gauge fixes the spatial diffeomorphism constraint $N^{a} C_{a}=-2 N^{a} \nabla_{b} P^{b}{ }_{a}=0$ (up to reduced spatial diffeomorphisms with shift vector $\vec{N}=\left(N^{\star}(x), N^{y}(y), N^{2}(z)\right)$)
(9) Coordinatise the reduced phase space via $q_{x x}, q_{y y}, q_{z z}, P^{x x}, P^{v y}, P^{z z}$
(5) Solve $C_{a}=0$ for $P^{a \neq b} \Rightarrow P^{a \neq b}\left(q_{a z}, P^{b b}\right) \quad \Rightarrow \quad$ insert in Hamiltonian

Choose connection type variables

(1) Define $e_{a} e_{a}=q_{a a}, e_{a} e^{a}=1$, without summation, and $E^{a}=\sqrt{\operatorname{det} q} e^{a}$
(2) Define $K_{a}=K_{a b} e^{b}$ with $K_{a b}$ being the extrinsic curvature constructed form $P^{a b}$
(3) Compute new Poisson brackets: $\left\{K_{a}(\sigma), E^{b}\left(\sigma^{\prime}\right)\right\}=\delta^{(3)}\left(\sigma, \sigma^{\prime}\right) \delta_{a}^{b}$
(4) K_{a}, E^{b} are like Ashtekar-Barbero variables without internal indices \Rightarrow Abelian gauge theory (Poisson bracket of Maxwell theory)

At this stage, only Hamiltonian constraint and reduced spatial diffeomorphisms left.

Classical preparations II: Consequences of symmetry

\mathbb{T}^{3} Bianchi I universe : 3 scale factors \& 3 momenta: $q_{a b}(\sigma)=\operatorname{diag}\left(q_{x x}, q_{y y}, q_{z z}\right)$

Classical preparations II: Consequences of symmetry

\mathbb{T}^{3} Bianchi I universe: 3 scale factors \& 3 momenta: $q_{a b}(\sigma)=\operatorname{diag}\left(q_{x x}, q_{y y}, q_{z z}\right)$

Constraints compatible with a Bianchi I universe

(1) $q_{a b}$ and $P^{a b}$ are diagonal in suitable coordinates
\Rightarrow impose $P^{a \neq b}\left(q_{a a}, P^{b b}\right)=P^{a \neq b}\left(K_{a}, E^{b}\right)=0$

Classical preparations II: Consequences of symmetry

\mathbb{T}^{3} Bianchi I universe : 3 scale factors \& 3 momenta: $q_{a b}(\sigma)=\operatorname{diag}\left(q_{x x}, q_{y y}, q_{z z}\right)$

Constraints compatible with a Bianchi I universe

(1) $q_{a b}$ and $P^{a b}$ are diagonal in suitable coordinates
\Rightarrow impose $P^{a \neq b}\left(q_{a a}, P^{b b}\right)=P^{a \neq b}\left(K_{a}, E^{b}\right)=0$
(2) E^{a} and K_{a} are independent of the spatial coordinate in suitable coordinates
\Rightarrow impose $\partial_{a} K_{b}=0=\partial_{a} e_{b}$

Classical preparations II: Consequences of symmetry

\mathbb{T}^{3} Bianchi I universe: 3 scale factors \& 3 momenta: $q_{a b}(\sigma)=\operatorname{diag}\left(q_{x x}, q_{y y}, q_{z z}\right)$

Constraints compatible with a Bianchi I universe

(1) $q_{a b}$ and $P^{a b}$ are diagonal in suitable coordinates
\Rightarrow impose $P^{a \neq b}\left(q_{a a}, P^{b b}\right)=P^{a \neq b}\left(K_{a}, E^{b}\right)=0$
(2) E^{a} and K_{a} are independent of the spatial coordinate in suitable coordinates
\Rightarrow impose $\partial_{a} K_{b}=0=\partial_{a} e_{b}$

Choose first class subset to impose as strong operator equations

Classical preparations II: Consequences of symmetry

\mathbb{T}^{3} Bianchi I universe : 3 scale factors \& 3 momenta: $q_{a b}(\sigma)=\operatorname{diag}\left(q_{x x}, q_{y y}, q_{z z}\right)$

Constraints compatible with a Bianchi I universe

(1) $q_{a b}$ and $P^{a b}$ are diagonal in suitable coordinates
\Rightarrow impose $P^{a \neq b}\left(q_{a a}, P^{b b}\right)=P^{a \neq b}\left(K_{a}, E^{b}\right)=0$
(2) E^{a} and K_{a} are independent of the spatial coordinate in suitable coordinates
\Rightarrow impose $\partial_{a} K_{b}=0=\partial_{a} e_{b}$

Choose first class subset to impose as strong operator equations
Without proof here, see paper for details:

Classical preparations II: Consequences of symmetry

 \mathbb{T}^{3} Bianchi I universe : 3 scale factors \& 3 momenta: $q_{a b}(\sigma)=\operatorname{diag}\left(q_{x x}, q_{y y}, q_{z z}\right)$
Constraints compatible with a Bianchi I universe

(1) $q_{a b}$ and $P^{a b}$ are diagonal in suitable coordinates
\Rightarrow impose $P^{a \neq b}\left(q_{a a}, P^{b b}\right)=P^{a \neq b}\left(K_{a}, E^{b}\right)=0$
(2) E^{a} and K_{a} are independent of the spatial coordinate in suitable coordinates
\Rightarrow impose $\partial_{a} K_{b}=0=\partial_{a} e_{b}$

Choose first class subset to impose as strong operator equations
Without proof here, see paper for details: A maximal first class subset is
(1) All spatial diffeomorphisms: $\tilde{C}_{a}\left[N^{a}\right]=\int_{\Sigma} d^{3} \sigma E^{a} \mathcal{L}_{\vec{N}} K_{a}=0$ (incorporates also reduced ones)
(2) Abelian Gauß law:
$G[\omega]=\int_{\Sigma} d^{3} \sigma \omega \partial_{a} E^{a}=0$

Classical preparations II: Consequences of symmetry

 \mathbb{T}^{3} Bianchi I universe : 3 scale factors \& 3 momenta: $q_{a b}(\sigma)=\operatorname{diag}\left(q_{x x}, q_{y y}, q_{z z}\right)$
Constraints compatible with a Bianchi I universe

(1) $q_{a b}$ and $P^{a b}$ are diagonal in suitable coordinates
\Rightarrow impose $P^{a \neq b}\left(q_{a a}, P^{b b}\right)=P^{a \neq b}\left(K_{a}, E^{b}\right)=0$
(2) E^{a} and K_{a} are independent of the spatial coordinate in suitable coordinates
\Rightarrow impose $\partial_{a} K_{b}=0=\partial_{a} e_{b}$

Choose first class subset to impose as strong operator equations Without proof here, see paper for details: A maximal first class subset is
(1) All spatial diffeomorphisms: $\tilde{C}_{a}\left[N^{a}\right]=\int_{\Sigma} d^{3} \sigma E^{a} \mathcal{L}_{\vec{N}} K_{a}=0$ (incorporates also reduced ones)
(2) Abelian Gauß law:

$$
G[\omega]=\int_{\Sigma} d^{3} \sigma \omega \partial_{a} E^{a}=0
$$

Result:

Direct consequences of a Bianchi I reduction can be imposed as spatial diffeomorphisms and a Gauß law on the (quantised) reduced phase space (as operator equations).

Classical preparations III: Summary

Phase space: (full GR admitting diagonal metric gauge)
(1) $K_{a}(\sigma), E^{b}(\sigma)$ are $3+3$ canonical variables per spatial point σ
(2) Remaining constraints are
(1) reduced spatial diffeomorphisms (preserving the diagonal gauge)
(2) Hamiltonian constraint

Direct consequences of a reduction to Bianchi I are

(1) All spatial diffeomorphisms: $\tilde{C}_{a}\left[N^{a}\right]=\int_{\Sigma} d^{3} \sigma E^{a} \mathcal{L}_{\vec{N}} K_{a}=0$
(2) Abelian Gauß law:

$$
G[\omega]=\int_{\Sigma} d^{3} \sigma \omega \partial_{a} E^{a}=0
$$

Strategy:

(1) Quantise full phase space via LQG techniques
(2) Impose symmetry reduction by imposing $\tilde{C}_{a}=0=G$ at the quantum level

Outline

(1) Approaches to symmetry reductions

(2) General strategy
(3) Bianchi I: Details on classical derivation
(4) Bianchi I: Details on quantum theory
(5) Spherical symmetry (sketch)

6 Conclusion

Quantisation I: Full theory in diagonal gauge

Standard LQG type quantisation

(1) Compute holonomies $h_{\gamma}^{\lambda}(K):=\exp \left(i \lambda \int_{\gamma} K_{a} d s^{a}\right)$ and fluxes $E(S)=\int_{S} E^{a} d^{2} s_{a}$ γ path, S surface, $\lambda \in \mathbb{Z}$ for $U(1)$, or $\lambda \in \mathbb{R}$ for $\mathbb{R}_{\text {Bohr }} \quad$ see e.g. [Corichi, Krasnov ' 97$]$ for $U(1)$

Quantisation I: Full theory in diagonal gauge

Standard LQG type quantisation

(1) Compute holonomies $h_{\gamma}^{\lambda}(K):=\exp \left(i \lambda \int_{\gamma} K_{a} d s^{a}\right)$ and fluxes $E(S)=\int_{S} E^{a} d^{2} s_{a}$ γ path, $\quad S$ surface, $\quad \lambda \in \mathbb{Z}$ for $U(1)$, or $\lambda \in \mathbb{R}$ for $\mathbb{R}_{\text {Bohr }}$ see e.g. [Corichi, Krasnov '97] for $\mathrm{U}(1)$
(2) Define positive linear Ashtekar-Lewandowski functional on holonomy-flux algebra
(3) Representation follows from the GNS construction: Hilbertspace $=L^{2}\left(\overline{\mathcal{A}}, d \mu_{\mathrm{AL}}\right)$ $\overline{\mathcal{A}}=$ generalised $U(1)$ or $\mathbb{R}_{\text {Bohr }}$ connections

Quantisation I: Full theory in diagonal gauge

Standard LQG type quantisation

(1) Compute holonomies $h_{\gamma}^{\lambda}(K):=\exp \left(i \lambda \int_{\gamma} K_{a} d s^{a}\right)$ and fluxes $E(S)=\int_{S} E^{a} d^{2} s_{a}$ γ path, $\quad S$ surface, $\quad \lambda \in \mathbb{Z}$ for $U(1)$, or $\lambda \in \mathbb{R}$ for $\mathbb{R}_{\text {Bohr }}$ see e.g. [Corichi, Krasnov '97] for $\mathrm{U}(1)$
(2) Define positive linear Ashtekar-Lewandowski functional on holonomy-flux algebra
(3) Representation follows from the GNS construction: Hilbertspace $=L^{2}\left(\overline{\mathcal{A}}, d \mu_{\mathrm{AL}}\right)$ $\overline{\mathcal{A}}=$ generalised $U(1)$ or $\mathbb{R}_{\text {Bohr }}$ connections

Remarks

- For $\mathbb{R}_{\text {Bohr }}: \lim _{R \rightarrow \infty} \frac{1}{2 R} \int_{-R}^{R} d x f(x)=\int_{\mathbb{R}_{\text {Bohr }}} d \mu_{\mathrm{H}} f(x)$ provides normalised and translation invariant Haar measure \Rightarrow per edge: $\mathcal{H}=L^{2}\left(\mathbb{R}_{\text {Bohr }}, d \mu_{\mathrm{H}}\right)$

Quantisation I: Full theory in diagonal gauge

Standard LQG type quantisation

(1) Compute holonomies $h_{\gamma}^{\lambda}(K):=\exp \left(i \lambda \int_{\gamma} K_{a} d s^{a}\right)$ and fluxes $E(S)=\int_{S} E^{a} d^{2} s_{a}$ γ path, $\quad S$ surface, $\quad \lambda \in \mathbb{Z}$ for $U(1)$, or $\lambda \in \mathbb{R}$ for $\mathbb{R}_{\text {Bohr }}$ see e.g. [Corichi, Krasnov '97] for $U(1)$
(2) Define positive linear Ashtekar-Lewandowski functional on holonomy-flux algebra
(3) Representation follows from the GNS construction: Hilbertspace $=L^{2}\left(\overline{\mathcal{A}}, d \mu_{\mathrm{AL}}\right)$ $\overline{\mathcal{A}}=$ generalised $U(1)$ or $\mathbb{R}_{\text {Bohr }}$ connections

Remarks

- For $\mathbb{R}_{\text {Bohr: }}: \lim _{R \rightarrow \infty} \frac{1}{2 R} \int_{-R}^{R} d x f(x)=\int_{\mathbb{R}_{\text {Bohr }}} d \mu_{\mathrm{H}} f(x)$ provides normalised and translation invariant Haar measure \Rightarrow per edge: $\mathcal{H}=L^{2}\left(\mathbb{R}_{\text {Bohr }}, d \mu_{\mathrm{H}}\right)$
- Choosing $\lambda \in \mathbb{Z}$ over $\lambda \in \mathbb{R}$ (i.e. compactifying $\int_{\gamma} K_{a} d s^{a}$) has no justification at this stage (also not later)

Quantisation II: Area operator

Area operator for Abelian theory

- $A(S)=|E(S)|=\left|\int_{S} E^{a} d^{2} s_{a}\right|$ is analogous to (absolute value of) electric flux
- Important difference to non-Abelian, e.g. $\mathrm{SU}(2)$, area op. $\int_{S} \sqrt{\left|E^{i} E_{i}\right|}$:
- Absolute value is outside of the integral
- $E(S)$ does not detect closed contractible loops for closed S

While one can also define "non-Abelian like" area operator here, the Abelian one will turn out to be most useful.

Quantisation II: Area operator

Area operator for Abelian theory

- $A(S)=|E(S)|=\left|\int_{S} E^{a} d^{2} s_{a}\right|$ is analogous to (absolute value of) electric flux
- Important difference to non-Abelian, e.g. $\mathrm{SU}(2)$, area op. $\int_{S} \sqrt{\left|E^{i} E_{i}\right|}$:
- Absolute value is outside of the integral
- $E(S)$ does not detect closed contractible loops for closed S

While one can also define "non-Abelian like" area operator here, the Abelian one will turn out to be most useful.

- Non-trivial topology: $A(S)$ can detect Wilson loops even for closed S

$\hat{A}(S)$ measures intersection number $N_{\text {int }} \times$ rep. label: $\hat{A}(S)\left|h_{\gamma}^{\lambda}\right\rangle=\left|N_{\text {int }} \lambda\right|\left|h_{\gamma}^{\lambda}\right\rangle$

Quantisation III: Imposing the symmetry reduction

Reduction constraints are very familiar from full theory

(1) All spatial diffeomorphisms: $\tilde{C}_{a}\left[N^{a}\right]=\int_{\Sigma} d^{3} \sigma E^{a} \mathcal{L}_{\vec{N}} K_{a}=0$
(2) Abelian Gauß law: $G[\omega]=\int_{\Sigma} d^{3} \sigma \omega \partial_{a} E^{a}=0$
\Rightarrow spatially diffeomorphism invariant and gauge invariant charge (spin) networks!

Quantisation III: Imposing the symmetry reduction

Reduction constraints are very familiar from full theory

(1) All spatial diffeomorphisms: $\tilde{C}_{a}\left[N^{a}\right]=\int_{\Sigma} d^{3} \sigma E^{a} \mathcal{L}_{\vec{N}} K_{a}=0$
(2) Abelian Gauß law: $\quad G[\omega]=\int_{\Sigma} d^{3} \sigma \omega \partial_{\mathrm{a}} E^{a}=0$
\Rightarrow spatially diffeomorphism invariant and gauge invariant charge (spin) networks!

Simplest choice of quantum state

Consider spin network made from 3 Wilson loops wrapping around $\mathbb{T}_{x}^{1}, \mathbb{T}_{y}^{1}, \mathbb{T}_{z}^{1}$, meeting in a single vertex v. [c.f. Husain '91, '05]
Mapping to Bianchi I LQC states of
[Ashtekar, Wilson-Ewing '09]
$\left|\lambda_{x}, \lambda_{y}, \lambda_{z}\right\rangle \mapsto\left|p_{1}, p_{2}, p_{3}\right\rangle$

Quantisation III: Imposing the symmetry reduction

Reduction constraints are very familiar from full theory
(1) All spatial diffeomorphisms: $\tilde{C}_{a}\left[N^{a}\right]=\int_{\Sigma} d^{3} \sigma E^{a} \mathcal{L}_{\vec{N}} K_{a}=0$
(2) Abelian Gauß law: $G[\omega]=\int_{\Sigma} d^{3} \sigma \omega \partial_{a} E^{a}=0$
\Rightarrow spatially diffeomorphism invariant and gauge invariant charge (spin) networks!

Simplest choice of quantum state

Consider spin network made from 3 Wilson loops wrapping around $\mathbb{T}_{x}^{1}, \mathbb{T}_{y}^{1}, \mathbb{T}_{z}^{1}$, meeting in a single vertex v. [c.f. Husain '91, '05]
Mapping to Bianchi I LQC states of
[Ashtekar, Wilson-Ewing '09]
$\left|\lambda_{x}, \lambda_{y}, \lambda_{z}\right\rangle \mapsto\left|p_{1}, p_{2}, p_{3}\right\rangle$

Observables w.r.t. the reduction constraints
(1) Area of closed surfaces
$\rightarrow 3$ non-trivial areas $A\left(\mathbb{T}_{x}^{2}\right), A\left(\mathbb{T}_{y}^{2}\right), A\left(\mathbb{T}_{z}^{2}\right)$
(2) Diff-equiv. classes of Wilson loops $\rightarrow 3$ non-trivial closed loops along $\mathbb{T}_{x}^{1}, \mathbb{T}_{y}^{1}, \mathbb{T}_{z}^{1}$

Quantisation IV: Dynamics

Hamiltonian constraint / true Hamiltonian (via deparametrisation)

Take original Hamiltonian:

- Evaluate at $q_{a \neq b}=0$ because of gauge fixing
- Discard $P^{a \neq b}, \partial_{a} e_{b}$, and $\partial_{a} K_{b}$ terms because of reduction constraints

Quantisation IV: Dynamics

Hamiltonian constraint / true Hamiltonian (via deparametrisation)

Take original Hamiltonian:

- Evaluate at $q_{a \neq b}=0$ because of gauge fixing
- Discard $P^{a \neq b}, \partial_{a} e_{b}$, and $\partial_{a} K_{b}$ terms because of reduction constraints
$\Rightarrow H[N]=\int d^{3} \sigma N\left(e_{x} K_{y} K_{z}+e_{y} K_{z} K_{x}+e_{z} K_{x} K_{y}\right) \quad$ looks like in Bianchi I cosmology

Quantisation IV: Dynamics

Hamiltonian constraint / true Hamiltonian (via deparametrisation)

Take original Hamiltonian:

- Evaluate at $q_{a \neq b}=0$ because of gauge fixing
- Discard $P^{a \neq b}, \partial_{a} e_{b}$, and $\partial_{a} K_{b}$ terms because of reduction constraints
$\Rightarrow H[N]=\int d^{3} \sigma N\left(e_{x} K_{y} K_{z}+e_{y} K_{z} K_{x}+e_{z} K_{x} K_{y}\right)$ looks like in Bianchi I cosmology

Regularise constraint operator (graph preserving)

- Substitute e_{a} either by fluxes or Thiemann's trick $e_{a}=2\left\{K_{a}, V\right\}$
- Approximate K_{a} via holonomies: $\int K_{a} d s^{a} \approx \sin \left(\lambda \int K_{a} d s^{a}\right) / \lambda$

Quantisation IV: Dynamics

Hamiltonian constraint / true Hamiltonian (via deparametrisation)

Take original Hamiltonian:

- Evaluate at $q_{a \neq b}=0$ because of gauge fixing
- Discard $P^{a \neq b}, \partial_{a} e_{b}$, and $\partial_{a} K_{b}$ terms because of reduction constraints
$\Rightarrow H[N]=\int d^{3} \sigma N\left(e_{x} K_{y} K_{z}+e_{y} K_{z} K_{x}+e_{z} K_{x} K_{y}\right) \quad$ looks like in Bianchi I cosmology

Regularise constraint operator (graph preserving)

- Substitute e_{a} either by fluxes or Thiemann's trick $e_{a}=2\left\{K_{a}, V\right\}$
- Approximate K_{a} via holonomies: $\int K_{a} d s^{a} \approx \sin \left(\lambda \int K_{a} d s^{a}\right) / \lambda$

Choice of λ is crucial! $\quad U(1)$ vs. $\mathbb{R}_{\text {Bohr }}$

- $\mathrm{U}(1)$ choice: $\lambda=1$ gives best approximation \Rightarrow "old" LQC dynamics [Ashtekar, Bojowald, Lewandowski '03]

Quantisation IV: Dynamics

Hamiltonian constraint / true Hamiltonian (via deparametrisation)

Take original Hamiltonian:

- Evaluate at $q_{a \neq b}=0$ because of gauge fixing
- Discard $P^{a \neq b}, \partial_{a} e_{b}$, and $\partial_{a} K_{b}$ terms because of reduction constraints
$\Rightarrow H[N]=\int d^{3} \sigma N\left(e_{x} K_{y} K_{z}+e_{y} K_{z} K_{x}+e_{z} K_{x} K_{y}\right) \quad$ looks like in Bianchi I cosmology

Regularise constraint operator (graph preserving)

- Substitute e_{a} either by fluxes or Thiemann's trick $e_{a}=2\left\{K_{a}, V\right\}$
- Approximate K_{a} via holonomies: $\int K_{a} d s^{a} \approx \sin \left(\lambda \int K_{a} d s^{a}\right) / \lambda$

Choice of λ is crucial! $\quad U(1)$ vs. $\mathbb{R}_{\text {Bohr }}$

- $\mathrm{U}(1)$ choice: $\lambda=1$ gives best approximation \Rightarrow "old" LQC dynamics [Ashtekar, Bojowald, Lewandowski '03]
- $\mathbb{R}_{\text {Bohr }}$ allows arbitrarily small $\lambda \in \mathbb{R}$ for better approximation. "improved" LQC choice: $1 / \lambda_{x}=\sqrt{\left|E^{y} E^{z} / E^{x}\right|}=$ size of universe in x-direction \Rightarrow "new" LQC dynamics [Ashtekar, Pawlowski, Singh '06; Ashtekar, Wilson-Ewing '09]

Outline

(1) Approaches to symmetry reductions

(2) General strategy
(3) Bianchi I: Details on classical derivation
4. Bianchi I: Details on quantum theory
(5) Spherical symmetry (sketch)

6 Conclusion

Classical preparations for reduction to spherical symmetry

ADM phase space in radial gauge (without details here)
(1) Start with ADM phase space

Classical preparations for reduction to spherical symmetry

ADM phase space in radial gauge (without details here)
(1) Start with ADM phase space
(2) Define adapted coordinate system
[Duch, Kamiński, Lewandowski, Świeżewski '14]

Classical preparations for reduction to spherical symmetry

ADM phase space in radial gauge (without details here)
(1) Start with ADM phase space
(2) Define adapted coordinate system
[Duch, Kamiński, Lewandowski, Świeżewski '14]
(3) Impose radial gauge $q_{r a}=\delta_{r a}$

Classical preparations for reduction to spherical symmetry

ADM phase space in radial gauge (without details here)
(1) Start with ADM phase space
(2) Define adapted coordinate system
[Duch, Kamiński, Lewandowski, Świeżewski '14]
(3) Impose radial gauge $q_{r a}=\delta_{r a}$
(4) Express $q_{A B}, P^{A B}$ via
$\mathbf{S U}(2)$ connection variables A_{A}^{i}, E_{j}^{B}
$A, B=\theta, \phi, \quad\left\{A_{A}^{i}(\sigma), E_{j}^{B}\left(\sigma^{\prime}\right)\right\}=\delta^{(3)}\left(\sigma, \sigma^{\prime}\right) \delta_{A}^{B} \delta_{j}^{i}$
$A_{A}^{i}, E_{j}^{B}=$ variables of 3d gravity, with spatial slice S_{r}^{2}

$(r, \theta, \phi) \leftrightarrow \sigma=\exp _{\sigma_{0}}\left(x^{\prime} e_{I}\right)$
$e_{I}=$ specific frame at $\sigma_{0}, \quad I=1,2,3$
$x^{\prime}=$ local "cartesian" coordinates
$x^{\prime} \leftrightarrow r, \theta, \phi$ spherical coordinates
$S_{r}^{2}=$ "spheres" of constant geodesic distance r

Classical preparations for reduction to spherical symmetry

ADM phase space in radial gauge (without details here)
(1) Start with ADM phase space
(2) Define adapted coordinate system
[Duch, Kamiński, Lewandowski, Świeżewski '14]
(3) Impose radial gauge $q_{r a}=\delta_{r a}$
(4) Express $q_{A B}, P^{A B}$ via

$\mathbf{S U}(2)$ connection variables A_{A}^{i}, E_{j}^{B}

$A, B=\theta, \phi, \quad\left\{A_{A}^{i}(\sigma), E_{j}^{B}\left(\sigma^{\prime}\right)\right\}=\delta^{(3)}\left(\sigma, \sigma^{\prime}\right) \delta_{A}^{B} \delta_{j}^{i}$
$A_{A}^{i}, E_{j}^{B}=$ variables of 3d gravity, with spatial slice S_{r}^{2}
(5) Solve $C_{a}=0$ for $P^{r r}, P^{r A} \Rightarrow P^{r a}\left(A_{A}^{i}, E_{j}^{B}\right)$ \Rightarrow insert in Hamiltonian

$(r, \theta, \phi) \leftrightarrow \sigma=\exp _{\sigma_{0}}\left(x^{\prime} e_{I}\right)$
$e_{I}=$ specific frame at $\sigma_{0}, \quad I=1,2,3$
$x^{\prime}=$ local "cartesian" coordinates
$x^{\prime} \leftrightarrow r, \theta, \phi$ spherical coordinates
$S_{r}^{2}=$ "spheres" of constant geodesic distance r

Classical preparations for reduction to spherical symmetry

ADM phase space in radial gauge (without details here)
(1) Start with ADM phase space
(2) Define adapted coordinate system
[Duch, Kamiński, Lewandowski, Świeżewski '14]
(3) Impose radial gauge $q_{r a}=\delta_{r a}$
(1) Express $q_{A B}, P^{A B}$ via

$\mathbf{S U}(2)$ connection variables A_{A}^{i}, E_{j}^{B}
$A, B=\theta, \phi, \quad\left\{A_{A}^{i}(\sigma), E_{j}^{B}\left(\sigma^{\prime}\right)\right\}=\delta^{(3)}\left(\sigma, \sigma^{\prime}\right) \delta_{A}^{B} \delta_{j}^{i}$
$A_{A}^{i}, E_{j}^{B}=$ variables of 3 d gravity, with spatial slice S_{r}^{2}
$(r, \theta, \phi) \leftrightarrow \sigma=\exp _{\sigma_{0}}\left(x^{\prime} e_{l}\right)$
$e_{I}=$ specific frame at $\sigma_{0}, \quad I=1,2,3$
$x^{\prime}=$ local "cartesian" coordinates
$x^{\prime} \leftrightarrow r, \theta, \phi$ spherical coordinates
$S_{r}^{2}=$ "spheres" of constant geodesic distance r
(6) Solve $C_{a}=0$ for $P^{r r}, P^{r A} \Rightarrow P^{r a}\left(A_{A}^{i}, E_{j}^{B}\right)$ \Rightarrow insert in Hamiltonian

Find conditions compatible with spherical symmetry

- $P^{r A}=0 \Leftrightarrow$ generator of all spatial diffeomorphisms preserving all S_{r}^{2}
(Follows form non-existence of non-zero spherically symmetric vector field on S^{2})
Impose spherical symmetry as invariance under S_{r}^{2}-preserving diffeomorphisms.
(These are active diffeomorphisms with respect to the (r, θ, ϕ) coordinate system)

Quantisation and reduction to spherical symmetry

Perform standard LQG-type quantisation (roughly similar to lattice field theory)

(1) $\operatorname{SU}(2)$ gauge theory with holonomies restricted to lie in an S_{r}^{2}
\Rightarrow Quantum states (generalised Wilson loops) have support on different S_{r}^{2}

Quantisation and reduction to spherical symmetry

Perform standard LQG-type quantisation (roughly similar to lattice field theory)

(1) $\mathrm{SU}(2)$ gauge theory with holonomies restricted to lie in an S_{r}^{2}
\Rightarrow Quantum states (generalised Wilson loops) have support on different S_{r}^{2}
(2) Reduction constraints lead to spatially diffeomorphism invariance on each S_{r}^{2} (Quantum states "diffeomorphism averaged" over the S_{r}^{2})

Quantisation and reduction to spherical symmetry

Perform standard LQG-type quantisation (roughly similar to lattice field theory)

(1) $\mathrm{SU}(2)$ gauge theory with holonomies restricted to lie in an S_{r}^{2}
\Rightarrow Quantum states (generalised Wilson loops) have support on different S_{r}^{2}
(2) Reduction constraints lead to spatially diffeomorphism invariance on each S_{r}^{2} (Quantum states "diffeomorphism averaged" over the S_{r}^{2})

Observables w.r.t. the reduction constraints
(1) Areas of the S_{r}^{2}
$\rightarrow \quad 4 \pi R(r)^{2}:=\int_{S_{r}^{2}} d^{2} x \sqrt{\operatorname{det} q_{A B}}$
(2) Averaged trace of momenta $\rightarrow \quad P_{R}(r):=\frac{2}{R(r)} \int_{S_{r}^{2}} d^{2} x P^{A B} q_{A B}$
(+ all other S_{r}^{2}-preserving diffeomorphism invariant observables. \Rightarrow more than in classically reduced theory!)

Quantisation and reduction to spherical symmetry

Perform standard LQG-type quantisation (roughly similar to lattice field theory)

(1) $\operatorname{SU}(2)$ gauge theory with holonomies restricted to lie in an S_{r}^{2}
\Rightarrow Quantum states (generalised Wilson loops) have support on different S_{r}^{2}
(2) Reduction constraints lead to spatially diffeomorphism invariance on each S_{r}^{2} (Quantum states "diffeomorphism averaged" over the S_{r}^{2})

Observables w.r.t. the reduction constraints
(1) Areas of the S_{r}^{2}
$\rightarrow \quad 4 \pi R(r)^{2}:=\int_{S_{r}^{2}} d^{2} x \sqrt{\operatorname{det} q_{A B}}$
(2) Averaged trace of momenta $\rightarrow \quad P_{R}(r):=\frac{2}{R(r)} \int_{S_{r}^{2}} d^{2} \times P^{A B} q_{A B}$
(+ all other S_{r}^{2}-preserving diffeomorphism invariant observables. \Rightarrow more than in classically reduced theory!)

What about dynamics?

More challenging than for Bianchi I, ongoing work with A. Zipfel. First steps

- Map states in classically reduced \rightarrow quantum reduced theory
- Compute quantum algebra $\left[\hat{R}(r), \hat{P}_{R}\left(r^{\prime}\right)\right]$ from full theory

Outline

(1) Approaches to symmetry reductions

(2) General strategy
(3) Bianchi I: Details on classical derivation

4 Bianchi I: Details on quantum theory
(5) Spherical symmetry (sketch)
(6) Conclusion

Conclusion: Proposed reduction programme successful

(1) Suitable classical starting point

- Bianchi I: ADM in diagonal metric gauge
- Sph. sym.: ADM in radial gauge
(2) Identification of constraints imposed by symmetry reduction
- Bianchi I: all spatial diffeomorphisms and Abelian Gauß law
- Sph. sym.: S_{r}^{2}-preserving diffeomorphisms (Gauß law from variable choice)
(3) Quantise the reduced phase space via LQG techniques
- Bianchi I: Abelian gauge theory
- Sph. sym.: SU(2) gauge theory with Wilson loops (graphs) in S_{r}^{2}
(4) Impose reduction conditions as operator equations
- Bianchi I: spatial diffeomorphism invariance and gauge invariance
- Sph. sym.: S_{r}^{2}-preserving spatial diffeomorphism invariance (and gauge invariance)
(5) Relate observables w.r.t. reduction constraints to mini- / midisuperspace
- Bianchi I: three areas and conjugate momenta, dynamics agree with mini-superspace quantisation
- Sph. sym.: $R(r)$ and $P_{R}(r)$, dynamics under investigation
(6) Future work: perturbations to Bianchi I, coarse graining, spherical collapse...

Conclusion: Proposed reduction programme successful

(1) Suitable classical starting point

- Bianchi I: ADM in diagonal metric gauge
- Sph. sym.: ADM in radial gauge
(2) Identification of constraints imposed by symmetry reduction
- Bianchi I: all spatial diffeomorphisms and Abelian Gauß law
- Sph. sym.: S_{r}^{2}-preserving diffeomorphisms (Gauß law from variable choice)
(3) Quantise the reduced phase space via LQG techniques
- Bianchi I: Abelian gauge theory
- Sph. sym.: SU(2) gauge theory with Wilson loops (graphs) in S_{r}^{2}
(4) Impose reduction conditions as operator equations
- Bianchi I: spatial diffeomorphism invariance and gauge invariance
- Sph. sym.: S_{r}^{2}-preserving spatial diffeomorphism invariance (and gauge invariance)
(5) Relate observables w.r.t. reduction constraints to mini- / midisuperspace
- Bianchi I: three areas and conjugate momenta, dynamics agree with mini-superspace quantisation
- Sph. sym.: $R(r)$ and $P_{R}(r)$, dynamics under investigation
(6) Future work: perturbations to Bianchi I, coarse graining, spherical collapse...

Thank you for your attention!

