A stability criterion for coherent states

[arXiv:1506.08613]

Antonia Zipfel

joined work with T. Thiemann

University of Warsaw

Motivation

Coherent states

- semiclassical limit
- quantum optics
- geometric quantization
- harmonic analysis

Why stable?-II

- constrained systems
- group averaging resembles evolution

1 Introduction: Complexifier coherent states

2 A stability criterion

Complexifier coherent states

[Hall '94],[Ashtekar, Lewandowski, Marolf, Mourão, Thiemann '96],[Thiemann, Winkler, Sahlmann '00]

Harmonic oscillator

- Complexification: $(q, p) \mapsto a = q ip$
- Coherent states ψ_a : eigenstates of $\hat{a} = \hat{q} i\hat{p}$

 \mathcal{M} Phase space, \mathcal{H} Hilbert space, $C \in C^{\infty}(\mathcal{M})$ complexifier, \mathcal{L}_C Lie derivative along Hamiltonian vector field of C

Complexifier coherent states

[Hall '94],[Ashtekar, Lewandowski, Marolf, Mourão, Thiemann '96],[Thiemann, Winkler, Sahlmann '00]

Harmonic oscillator

- Complexification: $(q, p) \mapsto a = q ip = e^{i\mathcal{L}_C}q$ with $C = p^2/2$
- Coherent states ψ_a : $\psi_a = \left[e^{-\hat{C}}\delta_{q'}(q)\right]_{q' \to a}$

 $\delta_{a'}(q) = \delta(q-q')$ Dirac delta, q'
ightarrow a analytic continuation

 \mathcal{M} Phase space, \mathcal{H} Hilbert space, $C \in C^{\infty}(\mathcal{M})$ complexifier, \mathcal{L}_{C} Lie derivative along Hamiltonian vector field of C

Complexifier coherent states

[Hall '94],[Ashtekar, Lewandowski, Marolf, Mourão, Thiemann '96],[Thiemann, Winkler, Sahlmann '00]

Harmonic oscillator

Complexification: (q, p) → a = q - ip = e^{iL_C}q with C = p²/2
Coherent states ψ_a: ψ_a = [e^{-Ĉ}δ_{q'}(q)]_{q'→a}

 $\delta_{q'}(q) = \delta(q-q')$ Dirac delta, q'
ightarrow a analytic continuation

Complexifier coherent states

A coherent state associated to a complexifier $C \in C^{\infty}(\mathcal{M})$ is given by $\psi_z(q) = \left[e^{-C/\hbar} \delta_{q'}(q) \right]_{q' \to z}$ where $q' \to z$ denotes analytic continuation to $z = e^{-i\mathcal{L}_C} q$.

 \mathcal{M} Phase space, \mathcal{H} Hilbert space, $\mathcal{C} \in \mathcal{C}^{\infty}(\mathcal{M})$ complexifier, $\mathcal{L}_{\mathcal{C}}$ Lie derivative along Hamiltonian vector field of \mathcal{C}

Plan of the talk

1 Introduction: Complexifier coherent states

2 A stability criterion

3 Generalized construction

A stability criterion

Definiton

If $\hat{U}(t, t_0) \psi_{z(t_0)} = e^{i\lambda(t)} \psi_{z(t)} \quad \forall t \in \mathbb{R}^+ \text{ and } \forall z \in \mathcal{M}$ then the system of coherent states $\{\psi_z\}_{z \in \mathcal{M}}$ is called stable. $\hat{U}(t, t_0)$ time evolution operator, z(t) classical trajectory in phase space \mathcal{M} , $\lambda(t)$ arbitrary phase

A stability criterion

Definiton

If $\hat{U}(t, t_0) \psi_{z(t_0)} = e^{i \lambda(t)} \psi_{z(t)} \quad \forall t \in \mathbb{R}^+ \text{ and } \forall z \in \mathcal{M}$ then the system of coherent states $\{\psi_z\}_{z \in \mathcal{M}}$ is called stable. $\hat{U}(t, t_0)$ time evolution operator, z(t) classical trajectory in phase space $\mathcal{M}, \lambda(t)$ arbitrary phase

\Leftrightarrow Time-evolution of z(t) depends only on z

$$\Leftrightarrow e^{i\mathcal{L}_{\mathcal{C}}}H = i\,p\,f(q) + g(q)$$

H Hamiltonian, f, g arbitrary functions of q, \mathcal{L}_{C} Lie derivative along Hamiltonian vector field of C

First solutions

Want to solve

$$e^{i\mathcal{L}_C}H \stackrel{!}{=} i\,p\,f(q) + g(q)$$

C complexifier, H Hamiltonian, f, g arbitrary functions of q, \mathcal{L}_C Lie derivative along Hamiltonian vector field of C

First solutions

Want to solve

$$\sum_{n=0}^{\infty} \frac{i^n}{n!} \{C, H\}_{(n)} \stackrel{!}{=} i \, p \, f(q) + g(q)$$

C complexifier, H Hamiltonian, f, g real functions, $\{C, H\}_{(n+1)} = \{C, \{C, H\}_{(n)}\}$ multiple Poisson bracket

Ansatz

Assume H, C quadratic in momentum and $\{H, C\}_{(n)} = 0$ for some $n \in \mathbb{N}$.

First solutions

Want to solve

$$\sum_{n=0}^{\infty} \frac{i^n}{n!} \{C, H\}_{(n)} \stackrel{!}{=} i \, p \, f(q) + g(q)$$

C complexifier, H Hamiltonian, f, g real functions, $\{C, H\}_{(n+1)} = \{C, \{C, H\}_{(n)}\}$ multiple Poisson bracket

Ansatz

Assume H, C quadratic in momentum and $\{H, C\}_{(n)} = 0$ for some $n \in \mathbb{N}$.

Radial oscillator

$$H = \frac{p^2}{2} + \frac{\omega^2}{2}q^2 + \lambda q^{-2} \qquad C = \frac{p^2}{2} + \frac{\lambda}{\omega}q^{-2}$$

$$\lambda, \omega > 0 \text{ some constants}$$

A No-go theorem

After a tedious analysis of the

Ansatz

Assume H, C quadratic in momentum and $\{H, C\}_{(n)} = 0$ for some $n \in \mathbb{N}$.

C complexifier, H Hamiltonian, $\{C, H\}_{(n+1)} = \{C, \{C, H\}_{(n)}\}$ multiple Poisson bracket

One finds:

The radial oscillator and its symplectic transforms are the only solutions.

Plan of the talk

Introduction: Complexifier coherent states

2 A stability criterion

Generalized construction

Dynamics in action-angle coordinates (I, Θ)

$$rac{dI}{dt}=0 \quad ext{ and } rac{d\Theta}{dt}=\omega(I)$$

Suggests to define
$$y := \sqrt{I}e^{i\Theta}$$

Dynamics:
$$\frac{d}{dt}y = i \omega(I) y$$

Polar decomposition: $y =: \frac{1}{\sqrt{2}}(Q - iP)$

$$\Rightarrow \quad y = \frac{1}{\sqrt{2}} e^{-i\mathcal{L}_C} Q \quad \text{with} \quad C = P^2/2$$

 $\omega(l)$ real function, (Q, P) canonically conjugated, \mathcal{L}_{C} Lie derivative along Hamiltonian vector field of C

Antonia Zipfel (UW)

Wroclaw, September 9

Generalized construction

Dynamics in action-angle coordinates (I, Θ)

$$rac{dI}{dt}=0$$
 and $rac{d\Theta}{dt}=\omega(I)$

Suggests to define
$$y := \sqrt{I}e^{i\Theta}$$

Dynamics:
$$\frac{d}{dt}y = i \omega(I) y$$

Polar decomposition: $y =: \frac{1}{\sqrt{2}}(Q - iP)$

$$\Rightarrow \quad y = \frac{1}{\sqrt{2}} e^{-i\mathcal{L}_C} Q \quad \text{with} \quad C = P^2/2$$

 $\omega(I)$ real function, (Q, P) canonically conjugated, \mathcal{L}_C Lie derivative along Hamiltonian vector field of C

Antonia Zipfel (UW)

~

Wroclaw, September 9

Properties

Advantages

• complexifier straightforward to construct

Disadvantages

- generically complicated dependence of y on (p, q)
- y-parametrization defined only locally

Free particle

Action-angle coordinates

$$I = \frac{p^2}{2}$$
 and $\Theta = \frac{q}{p}$

y-Parametrization

$$y_{\omega} = \frac{p}{\sqrt{2}} e^{i\omega q/p}$$

Properties

- locally well-defined except for p = 0
- $\bullet\,$ multi-valued \rightsquigarrow motion appears to be periodically
- If $\omega << q/p$ then $P \approx p + \mathcal{O}(\omega^2)$ and $Q \approx \omega q + \mathcal{O}(\omega^3)$
- y_{ω} generators of quasi-periodic functions

Free particle

Action-angle coordinates

$$I = \frac{p^2}{2}$$
 and $\Theta = \frac{q}{p}$

$$y_{\omega} = \frac{p}{\sqrt{2}} e^{i\omega q/p}$$

Properties

- locally well-defined except for p = 0
- $\bullet\,$ multi-valued $\rightsquigarrow\,$ motion appears to be periodically
- If $\omega << q/p$ then $P pprox p + \mathcal{O}(\omega^2)$ and $Q pprox \omega q + \mathcal{O}(\omega^3)$
- y_{ω} generators of quasi-periodic functions

Summary

- ✓ stability criterion
- ✓ restricted set of solutions
- ✓ generalized construction

Quantum Theory

- which polarization
- global/local structure
- geometric quantization

Stability Criterion

- approximate stability
- several degrees of freedom

Application in LQG

- symmetry reduced models
- 🗞 Loop/standard quantization

Summary

- ✓ stability criterion
- \checkmark restricted set of solutions
- ✓ generalized construction

Quantum Theory

- which polarization
- global/local structure
- 🛸 🛛 geometric quantization

Stability Criterion

- approximate stability
- Several degrees of freedom

Application in LQG

- symmetry reduced models
- Loop/standard quantization

Summary

- ✓ stability criterion
- \checkmark restricted set of solutions
- ✓ generalized construction

Quantum Theory

- which polarization
- 🗞 global/local structure
- 🗞 geometric quantization

Stability Criterion

- approximate stability
- several degrees of freedom

Application in LQG

- symmetry reduced models
- Loop/standard quantization

Summary

- ✓ stability criterion
- ✓ restricted set of solutions
- ✓ generalized construction

Quantum Theory

- which polarization
- global/local structure
- 🛸 🛛 geometric quantization

Stability Criterion

- approximate stability
- several degrees of freedom

Application in LQG

- symmetry reduced models
- 🗞 Loop/standard quantization

Summary

- ✓ stability criterion
- ✓ restricted set of solutions
- generalized construction

Quantum Theory

- which polarization
- global/local structure
- geometric quantization

Stability Criterion

- approximate stability
 - several degrees of freedom

Application in LQG

- Symmetry reduced models
- 🗞 Loop/standard quantization

Thank you!