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This presentation is therefore divided in 4 parts:

I) Introduction: motivations, approaches, applications

II) Drinfeld Twist and quantum Lie algebras

III) Differential geometry on NC manifolds

IV) Riemannian geometry on NC manifolds
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Motivations

Classical Mechanics −→ Quantum Mechanics observables becomes NC.

Classical Gravity −→ Quantum Gravity spacetime coordinates becomes NC.

-Supported by impossibility to test (with ideal experiments) the structure of
spacetime at infinitesimal distances. One is then lead to relax the usual as-
sumtion of spacetime as a smooth manifold (a continuum of points) and to
conceive a more general structure like a lattice or a noncommutative space-
time that naturally encodes a discretized or cell-like structure.

-In a noncommutative geometry a dynamical aspect of spacetime is encoded
at a more basic kinematical level.

-It is interesting to formulate a consistent gravity theory on this spacetime. I
see NC gravity as an effective theory. This theory may capture some aspects
of a quantum gravity theory.
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NC geometry approaches

• Algebraic: generators and relations. For example

[x̂i, x̂j] = iθij canonical

[x̂i, x̂j] = if
ij
kx̂
k Lie algebra

x̂ix̂j − qx̂jx̂i = 0 quantum plane (1)

Quantum groups and quantum spaces are usually introduced in this way.

•C?-algebra completion; representation as bounded operators on Hilbert space.
Spectral Triples.

• ?-product approach, usual space of functions, but we have a bi-differential
operator ?, (noncommutative and associative) e.g.,

(f ? h)(x) = e
− i

2λθ
µν ∂
∂xµ
⊗ ∂
∂yν f(x)h(y)

∣∣∣
x=y

.

Notice that if we set

F−1 = e
− i

2λθ
µν ∂
∂xµ
⊗ ∂
∂yν
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then

(f ? h)(x) = µ ◦ F−1(f ⊗ h)(x)

where µ is the usual product of functions µ(f ⊗ g) = fh.

The element

F = e
i
2λθ

µν ∂
∂xµ
⊗ ∂
∂yν = 1⊗1+

i

2
λθµν∂µ⊗∂ν−

1

8
λ2θµ1ν1θµ2ν2∂µ1∂µ2⊗∂ν1∂ν2+. . .

is an example of Drinfeld Twist.

In this presentation noncommutative spacetime will be spacetime equipped
with a ?-product. We will not discuss when f ?g is actually convergent. We will
therefore work in the context of formal deformation quantization (Kontsevich
2003).

Convergence aspects can be studied [Rieffel], [Bieliavsky Gayral].



The method of constructing ?-products using Drinfeld twists is not the most
general method, however it is quite powerful, and the class of ?-products ob-
tained is quite wide.

Key point:

First deform a group in a quantum group. Then consider commutative algebras
that carry a representation of the intitial group and deform these algebras so
that they carry a representation of the quantum group.

Given a manifold M the group is (a subgroup of) that of Diffeomorphisms; the
algebra is that of functions on M .
-This method allows to deform also the tensor algebra, the exterior algebra
and the differential geometry.
-It fits very well the construction of gravity theories on a noncommutative man-
ifold based on invariance under quantum diffeomeorphisms.

[P.A., Blohmann, Dimitrijevic, Meyer, Schupp, Wess]
[P.A., Dimitrijevic, Meyer, Wess]

[P.A., Castellani]
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The work we present today is a further development of these previous works
on NC gravity. We present the Cartan calculus, the Cartan structure equations
for torsion and curvature, and the Levi-Civita connection in NC Riemannian
geometry.

Physical applications

A noncommutative gravity theory is a modified gravity theory where the mod-
ification comes from an expected feature of spacetime at quantum gravity
regimes. The theory can be coupled to matter.

Applications include quantitative studies in:

- Early universe cosmology near Planck scales. Here inflation, through its pre-
dictions for the primordial perturbations, provides a particularly suitable frame-
work.

- Study of propagation of light in cuved NC spacetime. NC dispersion relations.
Velocity of light depends on its frequency if spacetime is curved: see talk by
Anna Pachol.
Results can be experimentally tested with gamma ray burst data from distant
supernovae, and eventually NC gravity theory coupled to massless fields (light)
could be verified or falsified.

7



Drinfeld Twist and quantum Lie algebras

Let g be a Lie algebra and Ug its universal enveloping algebra.
Ug is a Hopf algebra. On generators u ∈ g

∆(u) = u⊗ 1 + 1⊗ u , ε(u) = 0 , S(u) = −u .

Definition [Drinfeld]. A twist F is an invertible element F ∈ Ug⊗Ug such that

F ⊗ 1(∆⊗ id)F = 1⊗F(id⊗∆)F in Ug ⊗ Ug ⊗ Ug

Example: Let g be the (abelian) Lie algebra of translations ∂µ = ∂
∂xu on R4.

F = e
i
2λθ

µν∂µ⊗∂ν

= 1⊗ 1 +
1

2
λθµν∂µ ⊗ ∂ν +O(λ2)

θab is a constant (antisymmetric) matrix
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Definition An algebra A is a (left) Ug-module algebra if it is a Ug-module (i.e.
if there is an action of Ug on A) and, for all ξ ∈ Ug and a, b ∈ A,

Lξ(ab) = Lξ1
(a)Lξ2

(b) .

Equivalently all u ∈ g ⊂ Ug act as derivations of the algebra:

Lu(ab) = Lu(a)b+ aLu(b) .

Example: ∂µ is a derivation of the algebra C∞(R4).

Definition A Ug-module A-bimodule Ω is both a Ug-module and an A-
bimodule in a compatible way, for all ξ ∈ Ug, a ∈ A,ω ∈ Ω,

Lξ(a · ω) = Lξ1
(a)ξ2

(ω) , Lξ(ω · a) = Lξ1
(ω) · Lξ2

(a) .

H
AMA denotes the category ofUg-modulesA-bimodules; we write Ω ∈ Ug

AMA .

Example: The bimodule Ω of forms over R4.
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Theorem [Drinfeld]
i) Given a Hopf algebra Ug, i.e., (Ug, µ,∆, S, ε), and a twist F ∈ Ug ⊗ Ug
then we have a new Hopf algebra UgF :

(UgF , µ,∆F , SF , ε) ; (2)

with triangular R-matrix R = F21F−1. The new coproduct ∆F is, for all
ξ ∈ H,

∆F(ξ) = F∆(ξ)F−1 .

ii) Given an H-module algebra A, then we have the HF -module algebra A?
(or AF ) where, setting F−1 = f̄ α ⊗ f̄ α,

a ? b := Lαf̄ (a)Lf̄ α(b) .

Notation: we frequently omit writing the action L and simply write

a ? b = f̄ α(a) f̄ α(b) = µ ◦ F−1(a⊗ b) .

iii) Given a module Ω ∈ Ug
AMA then we have Ω? ∈ UgF

A?MA?,

a ? v = · ◦ F−1 . (a⊗ v) = (f̄ α . a) · (f̄ α . v) ,

v ? b = · ◦ F−1 . (v ⊗ b) = (f̄ α . v) · (f̄ α . b) .

iv) The categories UgAMA and UgF
A?MA? are equivalent.
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Ug acts on itself via the adjoint action

L : Ug ⊗ Ug −→ Ug

ξ ⊗ ζ 7−→ Lξ(ζ) ≡ ξ(ζ) := ξ1ζS(ξ2)

This action is compatible with the product in Ug, ξ(ζγ) = ξ1(ζ) ξ2(γ), hence,
Ug as an algebra is a Ug-module algebra and can be deformed as in ii).
Product in Ug?

ξ ? ζ := f̄ α(ξ) f̄ α(ζ) .

As algebras Ug? and UgF are isomorphic via

D : Ug? → UgF , D(ξ) := f̄ α(ξ) f̄ α

D(ξ ? ζ) = D(ξ)D(ζ) , for all ξ, ζ ∈ Ug?

Ug? is a triangular Hopf algebra equivalent to UgF by defining

∆? = (D−1 ⊗D−1) ◦∆F ◦D
S? = D−1 ◦ SF ◦D
R? = (D−1 ⊗D−1)(R)
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Corollary Every UgF -module algebra A? with UgF -action L : UgF ⊗A→ A

is a Ug?-module algebra with Ug?-action

L? := L ◦ (D ⊗ id) : Ug? ⊗A? −→ A?

ξ ⊗ a 7−→ L?ξ(a) := LD(ξ)(a) . (3)

Similarly every module Ω? ∈ UgF
A?MA?, is a module Ω? ∈ Ug?

A?MA?.

If A? = Ug?, then L? is the Ug?-adjoint action: L?ξ(ζ) = ξ1? ? ζ ? S?(ξ?).



Definition The quantum Lie algebra g? of Ug? is the vecotr space g with the
bracket

[u, v]? = [f̄ α(u), f̄ α(v)] . (4)

Theorem The quantum Lie algebra g? is the subspace of Ug? of braided prim-
itive elements

∆?(u) = u⊗ 1 + R̄α? ⊗ L?R̄?α(u)

The Lie bracket [ , ]? is the Ug?-adjoint action

[u, v]? = u1? ? v ? S?(u2?) . (5)

Furthermore the Lie bracket [ , ]? satisfies

[u, v]? = −[R̄α(v), R̄α(u)]? Braided-antisymm. prop.

[u, [v, z]?]? = [[u, v]?, z]? + [R̄α(v), [R̄α(u), z]?]? Braided-Jacoby identity ,

[u, v]? = u ? v − R̄α(v) ? R̄α(u) . Braided-commutator

g? is the quantum Lie algebra of the quantum enveloping algebra Ug? in the
terminology of Woronowicz.

[P.A., Dimitrijevic, Meyer, Wess]
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Differential geometry on NC manifolds
Let g be a subalgebra of the Lie algebra Ξ of vector fields on a manifold M .

A twist F ∈ Ug ⊗ Ug is automatically a twist F ∈ UΞ⊗ UΞ.

F−1

Function algebra A = C∞(M) −→ A? = C∞(M)? , ? = µ ◦ F−1

Tensor algebra (T ,⊗) −→ T? = (T ,⊗?) , ⊗? = ⊗ ◦ F−1

Exterior algebra (Ω•,∧) −→ Ω•? = (Ω•,∧?) , ∧? = ∧ ◦ F−1

Explicitly
a ? b = f̄ α(a)f̄ α(b), τ ⊗? τ ′ = f̄ α(τ)⊗ f̄ α(τ ′), θ ∧? θ′ = f̄ α(θ)∧ f̄ α(θ′).

Bimodule of 1-forms Ω ∈ UΞ
AMA −→ Ω? ∈ UΞ?

A?MA?

Bimodule of vector fields Ξ ∈ UΞ
AMA −→ Ξ? ∈ UΞ?

A?MA?.

Remark Ξ? is both the quantum Lie algebra of Ug? and an A?-bimodule.



Nondegenerate ?-pairing between the ?-bimodules Ξ? and Ω?

〈 , 〉? : Ξ? ×Ω? −→ A? ,

(u, ω) 7−→ 〈ξ, ω〉? := 〈f̄ α(u), f̄ α(ω)〉 . (6)

Extends to the ?-contraction operator on tensor fields

i?u = iαf̄ (u) ◦ Lf̄ α

Theorem (Cartan calculus)
-The exterior derivative d is compatible with the ∧?-product and gives a ?-
differential calculus (Ω•?,d).

-The contraction operator on Ω•? is a braided derivation:

i?u(θ ∧? θ′) = i?u(θ) ∧? θ′+ (−1)nR̄α(θ′) ∧? i?R̄α(u)(θ′)

-We have the braided Cartan calculus equalities

[L?u,L?v]? = L?[u,v]?
, [L?u, i?v]? = i?[u,v]?

, [i?u, i
?
v]? = 0 ,

[L?u,d]? = 0 , [i?u,d]? = L?u , [d,d]? = 0 ;

where [A,B]? = A ◦ B + (−1)deg(A) deg(B)R̄α(B) ◦ R̄α(A) is the graded
braided commutator of linear maps A,B on Ω•?.
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Connections

As usual right connection on V? ∈A?MA? is a linear map ∇? : V? → V? ⊗A?
Ω?, satisfying the right Leibniz rule, for all v ∈ V? and a ∈ A?,

∇?(v ? a) = (∇v) ? a+ v ⊗A? da .

Theorem (not necessarily equivariant connections)
If V ∈ Ug

AMA, then V? ∈ Ug?
A?MA? and the isomorphism D : UgF →

Ug? can be lifted to V? so that there is a 1-1 correspondence between right
connections on V and on V?.

[P.A., Schenkel]

The connection on V? extends to a connection on form valued sections:

d∇ : V? ⊗Ω•? → V? ⊗Ω•?

v ⊗ θ 7→ ∇?(v) ∧? θ + v ⊗? dθ

Curvature R∇? := d∇? ◦ d∇? is a right A?-linear map.



Theorem Since V is a commutative A-bimodule the right connection ∇ on V?
is also a braided left connection:

∇?(a ? w) = R̄α(a) ? R̄α(∇?)(w) + R̄α(w)⊗? R̄α(da) . (7)

Rmk. If∇ is Ug?-equivariant we recover the notion of A-bimodule connection:

∇(a ? w) = a ?∇(w) +Rα(w)⊗? Rα(da) .

[Mourad], [Dubois-Violette Masson]

In particular, for V = Ω, a right connection ∇ : Ω→ Ω⊗Ω is deformed to a
NC right connection

∇∗ : Ω? → Ω? ⊗? Ω?

that is then uniquely extended to

d∇∗ : Ω? ⊗Ω•? → Ω? ⊗? Ω•?

Next we introduce the connection on vector fields Ξ?, considering vector fields
dual to 1-forms Ω? via the pairing 〈 , 〉? and therefore inducing on this dual
bimodule the dual connection:

〈∗∇v, ω〉? = d〈v, ω〉? − 〈v,∇∗ω〉?



This is a left-connection

∗∇ : Ξ? → Ω? ⊗− ?Ξ? , ∗∇(av) = da⊗? v + a∗∇(v)

It is easily lifted to a connection

d∗∇ : Ω•? ⊗? Ξ? → Ω•? ⊗Ξ?

that satisfies the Leibnitz rule

d∗∇(θ ∧? ψ) = dθ ∧? ψ + (−1)|θ| θ ∧? d∗∇ψ ,

with ψ = η ⊗? v (vector field valued in the exterior algebra).

From now on, for ease of notation the index ? is omitted but on the connections

Define covariant derivative along a vector field

d?∇u := iud?∇+ d?∇iu

then we have the Cartan relation:

iud?∇v − d?∇αviαu = i[u,v]



The definitions of curvatures on the module Ξ and the dual module |Omega
are related by Theorem

〈d2
?∇
z, θ〉 = −〈z, d2

∇?
θ〉

Moreover, define as in [P.A., Dimitrijevic, Meyer, Wess]

R(u, v, z) := ?∇u ?∇vz − ?∇R̄α(v)
?∇R̄α(u)z −

?∇[u,v]z

then

R(u, v, z) = −iuivd2
?∇
z , 〈R(u, v, z), θ〉 = 〈u⊗ v ⊗ z, d2

∇?
ω〉

This last equality is Cartan second structure equation in coordinate free nota-
tion.
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Torsion

Let I ∈ Ω⊗Ξ be the canonical form such that iv(I) = v.

Locally in a basis I = θi ⊗ ei, with 〈ei, θj〉 = δ
j
i .

Define T (u, v) :=? ∇uv − ?∇R̄α(v)R̄α(u)− [u, v]

Theorem

T (u, v) = −iuivd∗∇I

In a basis ∇?θi = θj ⊗ ω i
j , then ?∇ei = −ω j

i ⊗ ej

d2
∇?θ

i = θk ⊗Ω i
k with

Ωk
l = dωk

l − ωkm ∧ ωml

d?∇I = d?∇(θi ⊗ ei) = (dθi − θj ∧ ω i
j )⊗ ej
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Propedeutical to the study of Levi-Civita connections is the study of

Tensor product structure

If V,W ∈ UgM then V ⊗W ∈ UgM by defining, for all ξ ∈ Ug, v ∈ V and
w ∈W ,

ξ(v ⊗ w) := ξ1(v)⊗ ξ2(w) ,

Given linear maps V P−→ Ṽ and W
Q−→ W̃ , then V ⊗ W P⊗Q−→ Ṽ ⊗ W̃ is

defined by

(P ⊗Q)(v ⊗ w) = P (v)⊗Q(w)

we have ξ I (P ⊗Q) 6= (ξ1 I P )⊗ (ξ2 I Q) in general.
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The tensor product compatible with the Ug-action is given by Definition of
⊗R [Majid 94]

(id⊗R Q) = τR ◦ (Q⊗ id) ◦ τ−1
R ;

where

τRW,V : W ⊗ V → V ⊗W , w⊗ v 7→ τRW,V (w⊗ v) = R̄α(v)⊗ R̄α(w) ,

is the braiding isomorphism and where we used the notationR−1 = R̄α⊗R̄α.

Proposition ⊗R is associative and compatible with the Ug-action.
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Sum of connections (Connections on tensor product modules)
Let ∇ : V → V ⊗Ω and ∇̃ : W →W ⊗Ω

∇⊕R ∇̃ : V ⊗AW → V ⊗AW ⊗A Ω ,

defined by: ∇⊕R ∇̃ := ∇⊗ id+ id⊗R ∇̃.

Associativity:
(
∇⊕R ∇̃

)
⊕R ∇̌ = ∇⊕R

(
∇̃ ⊕R ∇̌

)
.

Ug-action compatibility: ξ I (∇⊕R ∇̃) = (ξ I ∇)⊕R (ξ I ∇̃) .
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?-Riemaniann geometry

?-symmetric elements:

ω ⊗? ω′+ R̄α(ω′)⊗? R̄α(ω) .

Any symmetric tensor in Ω ⊗Ω is also a ?-symmetric tensor in Ω? ⊗? Ω?, proof: expansion

of above formula gives f̄
α
(ω)⊗ f̄ α(ω′) + f̄ α(ω′)⊗ f̄

α
(ω).

Requiring the right connection ∇? to vanish on the metric, we obtain, simi-
larly to the classical case, a condition for the torsion free left connection ?∇
on vector fields. Considering the ciclically permuted equations, adding and
subtracting we obtain the Levi-Civita connection ?∇g.

2〈αv ⊗? ?∇αuz, g〉 = L?u〈v ⊗? z, g〉? − L?αv〈αu⊗? z, g〉? + L?
αβz
〈αu⊗? βv, g〉?

+〈[u, v]? ⊗? z, g〉? + 〈u⊗? [v, z]?, g〉? + 〈[u, βz]? ⊗? βv, g〉?
were αv := R̄α(v) and αu := R̄α(u). Now, since u, v, z are arbitrary, the
pairing is nondegenerate and the metric is also nondegenerate, knowledge of
the l.h.s. uniquely defines the connection.

This result generalizes to any Drinfeld twist previous ones found for abelian
Drinfeld twist NC geometry.
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