Kinematics of particles with q-de Sitter-inspired symmetries

Giulia Gubitosi

Imperial College London

partially based on:
Barcaroli, Gubitosi, Phys.Rev. D93 (2016)

Noncommutative geometry, quantum symmetries and quantum gravity II Wroclaw - July 2016

Motivations

- Hopf algebras provide consistent framework to introduce an invariant energy scale (as expected in QG) consistent with (deformed) spacetime symmetries
* k-Poincaré was used to develop phenomenology associated to deformed Poincaré symmetry, in particular focussing on energy-dependent time of travel of relativistic particles
- Amelino-Camelia, Kowalski-Glikman, Mandanici, Procaccini, Int. J. Mod. Phys. A20 (2005)
\downarrow opportunities for phenomenology arise in contexts where spacetime curvature is actually non-negligible (early universe, propagation of photons from Gamma-ray Bursts..)
-M. Ackermann et al. (Fermi GBM/LAT), Nature 462(2009)
-Amelino-Camelia, Fiore, Guetta, Puccetti, Adv. High Energy Phys. 2014
\uparrow extension of results fond in kP to curved spacetime is non-trivial, as one would in general expect some sort of interplay between effects of curvature and of quantum symmetry deformation (alternatively, curvature in momentum space)
-Amelino-Camelia, Smolin, Starodubtsev, Class. Quant. Grav. 21(2004)
- Marciano, Amelino-Camelia, Bruno, Gubitosi, Mandanici, Melchiorri,

JCAP 1006 (2010)

- q-de Sitter provides a model for quantum-deformed symmetries associated to a curved (de Sitter) spacetime

de Sitter algebra

$+1+1$ dimensional de Sitter manifold can be described as the 2-dim hypersurface embedded in a 3-dim Minkowski manifold

$$
\left(z^{0}\right)^{2}-\left(z^{1}\right)^{2}-\left(z^{2}\right)^{2}=-H^{-2}
$$

\& line element in flat-slicing coordinates (comoving coordinates)

$$
d s^{2}=\left(d x^{0}\right)^{2}-e^{2 H x^{0}}\left(d x^{1}\right)^{2}
$$

- algebra of symmetries (first order in H)

$$
\begin{aligned}
\left\{\mathcal{P}_{0}, \mathcal{P}_{1}\right\} & =H \mathcal{P}_{1} \\
\left\{\mathcal{P}_{0}, \mathcal{N}\right\} & =\mathcal{P}_{1}-H \mathcal{N} \\
\left\{\mathcal{P}_{1}, \mathcal{N}\right\} & =\mathcal{P}_{0}
\end{aligned}
$$

\downarrow mass Casimir $\quad \mathcal{C}_{d S}=\mathcal{P}_{0}^{2}-\mathcal{P}_{1}^{2}+2 H \mathcal{N} \mathcal{P}_{1}$

- representation on phase space:

$$
\begin{array}{lcc}
\left\{x^{\mu}, x^{\nu}\right\}= & 0, \\
\left\{x^{\mu}, p_{\nu}\right\}= & -\delta_{\nu}^{\mu}, \\
\left\{p_{\mu}, p_{\nu}\right\} & 0 .
\end{array}
$$

$$
\begin{aligned}
\mathcal{P}_{0} & =p_{0}-H x^{1} p_{1}, \\
\mathcal{P}_{1} & =p_{1} \\
\mathcal{N} & =p_{1} x^{0}+p_{0} x^{1}-H\left(p_{1}\left(x^{0}\right)^{2}+\frac{1}{2} p_{1}\left(x^{1}\right)^{2}\right)
\end{aligned}
$$

de Sitter particle kinematics

- evolution of phase space coordinates is given by Hamilton equations with the Hamiltonian given by the Casimir

$$
\begin{aligned}
\dot{x}^{0} & \equiv\left\{\mathcal{C}_{d S}, x^{0}\right\}=2 p_{0}, \\
\dot{x}^{1} & \equiv\left\{\mathcal{C}_{d S}, x^{1}\right\}=-2 p_{1}\left(1-2 H x^{0}\right), \\
\dot{p}_{0} & \equiv\left\{\mathcal{C}_{d S}, p_{0}\right\}=-2 H p_{1}^{2}, \\
\dot{p}_{1} & \equiv\left\{\mathcal{C}_{d S}, p_{1}\right\}=0,
\end{aligned}
$$

- the massless condition $\mathcal{C}_{d S}=0$ relates energy and spatial momentum:

$$
p_{0}=-p_{1}\left(1-H x^{0}\right)
$$

+ coordinate velocity: $\quad v \equiv \frac{\dot{x}^{1}}{\dot{x}^{0}}=-\frac{p_{1}}{p_{0}}\left(1-2 H x^{0}\right)=1-H x^{0}$
- worldline

$$
x^{1}-\bar{x}^{1} \equiv \int_{0}^{\tau} \dot{x}^{1} d \tau=\int_{\bar{x}^{0}}^{x^{0}} v d x^{0}=x^{0}-\bar{x}^{0}-\frac{1}{2} H\left(\left(x^{0}\right)^{2}-\left(\bar{x}^{0}\right)^{2}\right)
$$

k-Poincaré algebra - bicrossproduct basis

- algebra of symmetries (first order in ℓ)
-Lukierski, Nowicki, Ruegg, Phys. Lett. B 293 (1992)
-Lukierski, Ruegg, Nowicki, Tolstoi, Phys. Lett. B 264 (1991)
-Majid, Ruegg, Phys.Lett. B334 (1994)

$$
\begin{aligned}
\left\{\mathcal{P}_{0}, \mathcal{P}_{1}\right\} & =0, \\
\left\{\mathcal{P}_{0}, \mathcal{N}\right\} & =\mathcal{P}_{1}, \\
\left\{\mathcal{P}_{1}, \mathcal{N}\right\} & =\mathcal{P}_{0}-\ell\left(\mathcal{P}_{0}^{2}+\frac{1}{2} \mathcal{P}_{1}^{2}\right),
\end{aligned}
$$

- mass Casimir

$$
\mathcal{C}_{\ell}=\mathcal{P}_{0}^{2}-\mathcal{P}_{1}^{2}-\ell \mathcal{P}_{0} \mathcal{P}_{1}^{2}
$$

+ coproducts and antipodes

$$
\begin{aligned}
\Delta\left(\mathcal{P}_{0}\right) & =\mathcal{P}_{0} \otimes \mathbb{I}+\mathbb{I} \otimes \mathcal{P}_{0}, & S\left(\mathcal{P}_{0}\right) & =-\mathcal{P}_{0}, \\
\Delta\left(\mathcal{P}_{1}\right) & =\mathcal{P}_{1} \otimes \mathbb{I}+\mathbb{I} \otimes \mathcal{P}_{1}-\ell \mathcal{P}_{0} \otimes \mathcal{P}_{1}, & S\left(\mathcal{P}_{1}\right) & =-\left(1+\ell \mathcal{P}_{0}\right) \mathcal{P}_{1}, \\
\Delta(\mathcal{N}) & =\mathcal{N} \otimes \mathbb{I}+\mathbb{I} \otimes \mathcal{N}-\ell \mathcal{P}_{0} \otimes \mathcal{N} . & S(\mathcal{N}) & =-\left(1+\ell \mathcal{P}_{0}\right) \mathcal{N},
\end{aligned}
$$

- momenta live on a (portion of) de Sitter manifold
-Kowalski-Glikman, Nowak, Class. Quant. Grav. 20 (2003)
- Kowalski-Glikman Phys. Lett. B 547 (2002)
-Gubitosi, Mercati, Class.Quant.Grav. 30 (2013)
-Amelino-Camelia, Arzano, Kowalski-Glikman, Rosati,
Trevisan, Class. Quant. Grav. 29 (2012)

Semiclassical approximation

* we are interested in studying the propagation of a free relativistic particle, without purely quantum effects (quantum correlations, fuzziness..)
* the Planck-scale regime is in this case defined as the limit where $\hbar \rightarrow 0$
while keeping the Planck energy ($E_{P}=\sqrt{\frac{\hbar c^{5}}{G}}$) finite
- in this semiclassical approximation, the symmetries of phase space are described by Poisson brackets satisfying the same relations as the commutators of the Hopf algebra under consideration
- spacetime is defined via a classical phase-space construction - commutative coordinates are related to the non-commutative ones via an energy-dependent redefinition
- the coproducts and antipodes enter in the analysis only to define finite translation, as discussed later (no multi-particle states)

k-Poincaré particle kinematics

- representation on phase space:

$$
\begin{aligned}
& \left\{x^{\mu}, x^{\nu}\right\}=0, \\
& \left\{x^{\mu}, p_{\nu}\right\}=-\delta_{\nu}^{\mu}, \\
& \left\{p_{\mu}, p_{\nu}\right\}=0 .
\end{aligned} \longrightarrow \begin{aligned}
& \mathcal{P}_{0}=p_{0}, \\
& \mathcal{P}_{1}=p_{1}, \\
& \mathcal{N}=p_{1} x^{0}+p_{0} x^{1}-\ell\left(x^{1}\left(p_{0}\right)^{2}+\frac{x^{1}\left(p_{1}\right)^{2}}{2}\right),
\end{aligned}
$$

- evolution of phase space coordinates is given by Hamilton equations

$$
\begin{aligned}
\dot{x}^{0} & \equiv\left\{\mathcal{C}_{\ell}, x^{0}\right\}=2 p_{0}-\ell p_{1}^{2} \\
\dot{x}^{1} & \equiv\left\{\mathcal{C}_{\ell}, x^{1}\right\}=-2 p_{1}\left(1+\ell p_{0}\right) \\
\dot{p}_{0} & \equiv\left\{\mathcal{C}_{\ell}, p_{0}\right\}=0 \\
\dot{p}_{1} & \equiv\left\{\mathcal{C}_{\ell}, p_{1}\right\}=0
\end{aligned}
$$

- the massless condition $\mathcal{C}_{\ell}=0$ relates energy and spatial momentum:

$$
p_{0}=-p_{1}\left(1-\frac{1}{2} \ell p_{1}\right)
$$

+ coordinate velocity: $\quad v \equiv \frac{\dot{x}^{1}}{\dot{x}^{0}}=1-\ell p_{1}$
- particle worldline

$$
x^{1}-\bar{x}^{1} \equiv \int_{0}^{\tau} \dot{x}^{1} d \tau=\int_{\bar{x}^{0}}^{x^{0}} v d x^{0}=\left(x^{0}-\bar{x}^{0}\right)\left(1-\ell p_{1}\right)
$$

duality between dS and kP

- de Sitter worldline (starting from the origin):

$$
x^{1}=x^{0}-\frac{1}{2} H\left(x^{0}\right)^{2}
$$

- de Sitter energy-momentum relation:

$$
p_{0}=-p_{1}\left(1-H x^{0}\right)
$$

+ k-Poincaré worldline (starting from the origin):

$$
x^{1}=x^{0}\left(1+\ell p_{0}\right)
$$

- k-Poincaré energy-momentum relation:

$$
p_{0}=-p_{1}\left(1-\frac{1}{2} \ell p_{1}\right)
$$

duality between dS and kP

* correlation between time of detection and energy, for fixed energy and time of emission (de Sitter spacetime, all orders in H) - redshift

+ correlation between time of detection and energy, for fixed energy and time of emission (de Sitter momentum space, all orders in ℓ) - time delay

- Amelino-Camelia, Barcaroli, Gubitosi, Loret, Class.Quant.Grav. 30 (2013)

q-de Sitter algebra $\left[\mathrm{SO}_{\mathrm{q}}(3,1)\right]$

+ algebra of symmetries

$$
\begin{aligned}
\left\{\mathcal{P}_{0}, \mathcal{P}_{1}\right\}= & H \mathcal{P}_{1}, \\
\left\{\mathcal{P}_{0}, \mathcal{N}\right\}= & \mathcal{P}_{1}-H \mathcal{N}, \\
\left\{\mathcal{P}_{1}, \mathcal{N}\right\}= & \cosh (w / 2) \frac{1-e^{-2 \frac{w \mathcal{P}_{0}}{H}}}{2 w / H}-\frac{1}{H} \sinh (w / 2) e^{-\frac{w \mathcal{P}_{0}}{H}} \Theta, \\
& \Theta \equiv e^{w P_{0} / 2 H}(P-H N) e^{w P_{0} / 2 H}(P-H N)-H^{2} e^{w P_{0} / 2 H} N e^{w P_{0} / 2 H} N
\end{aligned}
$$

- mass Casimir

$$
\mathcal{C}=H^{2} \frac{\cosh (w / 2)}{w^{2} / 4} \sinh ^{2}\left(\frac{w \mathcal{P}_{0}}{2 H}\right)-\frac{\sinh (w / 2)}{w / 2} \Theta
$$

- coproducts and antipodes

$$
\begin{aligned}
\Delta\left(\mathcal{P}_{0}\right) & =\mathcal{P}_{0} \otimes \mathbb{I}+\mathbb{I} \otimes \mathcal{P}_{0}, & S\left(\mathcal{P}_{0}\right) & =-\mathcal{P}_{0}, \\
\Delta\left(\mathcal{P}_{1}\right) & =\mathcal{P}_{1} \otimes \mathbb{I}+e^{-w \frac{\mathcal{P}_{0}}{H}} \otimes \mathcal{P}_{1}, & S\left(\mathcal{P}_{1}\right) & =-e^{w \frac{\mathcal{P}_{0}}{H}} \mathcal{P}_{1}, \\
\Delta(\mathcal{N}) & =\mathcal{N} \otimes \mathbb{I}+e^{-w \frac{\mathcal{T}_{0}}{H}} \otimes \mathcal{N} . & S(\mathcal{N}) & =-e^{w \frac{\mathcal{P}_{0}}{H}} \mathcal{N},
\end{aligned}
$$

(same structure as the coalgebra of k-Poincaré)

qdS - contraction to dS and kP

the dimensionless parameter w can be constructed as a combination of the two relevant scales of the model, H and ℓ. In particular an interesting choice is $w=H \ell$. In this case:

+ the $\mathrm{H} \rightarrow 0$ limit gives the contraction to k -Poincaré algebra
- the $\ell \rightarrow 0$ limit gives the contraction to de Sitter algebra algebra

This specific case allows to study the phenomenology of a model where curvature on both spacetime and momentum space is present and to investigate the effects of their interplay

qdS - continued

if $\mathrm{w}=\mathrm{H} \ell$ and at the first order in H, ℓ and $\mathrm{H} \ell$

- algebra of symmetries (first order in ℓ)

$$
\begin{aligned}
\left\{\mathcal{P}_{0}, \mathcal{P}_{1}\right\} & =H \mathcal{P}_{1} \\
\left\{\mathcal{P}_{0}, \mathcal{N}\right\} & =\mathcal{P}_{1}-H \mathcal{N} \\
\left\{\mathcal{P}_{1}, \mathcal{N}\right\} & =\mathcal{P}_{0}-\ell\left(\mathcal{P}_{0}^{2}+\frac{\mathcal{P}_{1}^{2}}{2}\right)+\ell H \mathcal{N} \mathcal{P}_{1}
\end{aligned}
$$

- mass Casimir

$$
\mathcal{C}_{q d S}=\mathcal{P}_{0}^{2}-\mathcal{P}_{1}^{2}-\ell \mathcal{P}_{0} \mathcal{P}_{1}^{2}+2 H \mathcal{N} \mathcal{P}_{1}+2 \ell H \mathcal{N} \mathcal{P}_{0} \mathcal{P}_{1}
$$

+ coproducts and antipodes reduce to the ones of k-Poincaré

$$
\begin{aligned}
\Delta\left(\mathcal{P}_{0}\right) & =\mathcal{P}_{0} \otimes \mathbb{I}+\mathbb{I} \otimes \mathcal{P}_{0}, & S\left(\mathcal{P}_{0}\right) & =-\mathcal{P}_{0}, \\
\Delta\left(\mathcal{P}_{1}\right) & =\mathcal{P}_{1} \otimes \mathbb{I}+\mathbb{I} \otimes \mathcal{P}_{1}-\ell \mathcal{P}_{0} \otimes \mathcal{P}_{1}, & S\left(\mathcal{P}_{1}\right) & =-\left(1+\ell \mathcal{P}_{0}\right) \mathcal{P}_{1}, \\
\Delta(\mathcal{N}) & =\mathcal{N} \otimes \mathbb{I}+\mathbb{I} \otimes \mathcal{N}-\ell \mathcal{P}_{0} \otimes \mathcal{N} . & S(\mathcal{N}) & =-\left(1+\ell \mathcal{P}_{0}\right) \mathcal{N},
\end{aligned}
$$

qdS - representation on phase space

+ phase space defined by Poisson brackets:

$$
\begin{aligned}
\left\{x^{\mu}, x^{\nu}\right\} & =0 \\
\left\{x^{\mu}, p_{\nu}\right\} & =-\delta_{\nu}^{\mu} \\
\left\{p_{\mu}, p_{\nu}\right\} & =0
\end{aligned}
$$

\downarrow representation of generators

$$
\begin{aligned}
\mathcal{P}_{0}= & p_{0}-H x^{1} p_{1}, \\
\mathcal{P}_{1}= & p_{1} \\
\mathcal{N}= & p_{1} x^{0}+p_{0} x^{1}-H\left(p_{1}\left(x^{0}\right)^{2}+\frac{p_{1}\left(x^{1}\right)^{2}}{2}\right)- \\
& -\ell x^{1}\left(\left(p_{0}\right)^{2}+\frac{\left(p_{1}\right)^{2}}{2}\right)+H \ell p_{1} x^{1}\left(p_{1} x^{0}+\frac{3}{2} p_{0} x^{1}\right) .
\end{aligned}
$$

- representation of mass Casimir

$$
\mathcal{C}_{q d S}=p_{0}^{2}-p_{1}^{2}-\ell p_{0} p_{1}^{2}+2 H p_{1}^{2} x^{0}+2 \ell H p_{0} p_{1}^{2} x^{0}
$$

Worldlines in phase space

+ evolution of phase space coordinates is given by Hamilton equations with the Hamiltonian given by the Casimir

$$
\begin{aligned}
\dot{x}^{0} & \equiv\left\{\mathcal{C}_{q d S}, x^{0}\right\}=2 p_{0}-\ell p_{1}^{2}\left(1-2 H x^{0}\right) \\
\dot{x}^{1} & \equiv\left\{\mathcal{C}_{q d S}, x^{1}\right\}=-2 p_{1}\left(1+\ell p_{0}\right)\left(1-2 H x^{0}\right) \\
\dot{p}_{0} & \equiv\left\{\mathcal{C}_{q d S}, p_{0}\right\}=-2 H p_{1}^{2}\left(1+\ell p_{0}\right) \\
\dot{p}_{1} & \equiv\left\{\mathcal{C}_{q d S}, p_{1}\right\}=0 .
\end{aligned}
$$

- the massless condition $\mathcal{C}_{q d S}=0$ relates energy and spatial momentum:

$$
p_{0}=-p_{1}\left(1-H x^{0}-\ell p_{1}\left(\frac{1}{2}-H x^{0}\right)\right)
$$

+ coordinate velocity: $\quad v \equiv \frac{\dot{x}^{1}}{\dot{x}^{0}}=1-H x^{0}-\ell p_{1}\left(1-2 H x^{0}\right)$
- worldline

$$
x^{1}-\bar{x}^{1} \equiv \int_{0}^{\tau} \dot{x}^{1} d \tau=\int_{\bar{x}^{0}}^{x^{0}} v d x^{0}=\left(x^{0}-\bar{x}^{0}\right)\left(1-\ell p_{1}\right)-\frac{1}{2} H\left(\left(x^{0}\right)^{2}-\left(\bar{x}^{0}\right)^{2}\right)\left(1-2 \ell p_{1}\right)
$$

Worldlines in spacetime

BLACK: Minkowski
RED: k-Poincaré
BLUE: de Sitter
GREEN: q-de Sitter

qdS - finite translations

\downarrow action of finite spacetime translations

$$
\mathcal{T}_{\left\{a^{0}, a^{1}\right\}} \triangleright F=\sum_{n=0}^{\infty} \frac{1}{n!} \underbrace{\left\{-a^{\mu} \mathcal{P}_{\mu},\left\{\ldots,\left\{-a^{\mu} \mathcal{P}_{\mu}\right.\right.\right.}_{n \text { times }}, F\} \ldots\}
$$

For a Hopf algebra one would in general use the adjoint action. However the adjoint action for k-Poincaré (in bicrossproduct basis) reduces to ordinary action via commutators and the same holds for qdS since the coproducts and antipodes have same structure as in kP.

+ explicit form:

$$
\begin{aligned}
x_{B}^{0} & \equiv \mathcal{T}_{\left\{a^{0}, a^{1}\right\}} \triangleright x_{A}^{0}=x_{A}^{0}-a^{0}, \\
x_{B}^{1} & \equiv \mathcal{T}_{\left\{a^{0}, a^{1}\right\}} \triangleright x_{A}^{1}=x_{A}^{1}\left(1+H a^{0}\right)-a^{1}\left(1+\frac{1}{2} H a^{0}\right), \\
p_{0}^{B} & \equiv \mathcal{T}_{\left\{a^{0}, a^{1}\right\}} \triangleright p_{0}^{A}=p_{0}^{A}, \\
p_{1}^{B} & \equiv \mathcal{T}_{\left\{a^{0}, a^{1}\right\}} \triangleright p_{1}^{A}=p_{1}^{A}\left(1-H a^{0}\right) .
\end{aligned}
$$

(same expression as standard de Sitter translations)

Energy-dependent redshift

the redshift is found comparing the energy of a particle measured by an observer local at emission (Alice) and the energy measured by an observer local at detection (Bob)

$$
z \equiv \frac{p_{0}^{A @ A}-p_{0}^{B @ B}}{p_{0}^{B @ B}}
$$

- evolution of energy along the particle's worldline as inferred by Alice:

$$
p_{0}^{A}-p_{0}^{A @ A}=H p_{1}^{A} x_{A}^{0}\left(1-\ell p_{1}\right)=-H p_{0}^{A @ A} x_{A}^{0}\left(1+\frac{\ell}{2} p_{0}^{A @ A}\right)
$$

- the energy measured by Bob is found by applying a translation to the one inferred by Alice (the translation is such that it connects Alice and Bob)

$$
p_{0}^{B @ B}=\mathcal{T}_{a^{0}, a^{1}} \triangleright p_{0}^{A @ B}=p_{0}^{A @ B}=p_{0}^{A @ A}\left(1-H x_{A @ B}^{0}\left(1+\frac{\ell}{2} p_{0}^{A @ A}\right)\right)
$$

- redshift:

$$
z=H x_{A @ B}^{0}\left(1+\frac{\ell}{2} p_{0}^{A @ A}\right)=H a^{0}\left(1+\frac{\ell}{2} p_{0}^{A @ A}\right)
$$

Time delay

compare the times of arrival at the observer Bob of two photons emitted simultaneously by Alice in the origin of her reference frame, with different energies

- worldlines of the two particles as seen by Alice:

$$
\begin{aligned}
& x_{A}^{1}=x_{A}^{0}\left(1+\ell p_{0}^{A @ A}\right)-\frac{1}{2} H\left(x_{A}^{0}\right)^{2}\left(1+2 \ell p_{0}^{A @ A}\right), \\
& \tilde{x}_{A}^{1}=\tilde{x}_{A}^{0}\left(1+\ell \tilde{p}_{0}^{A @ A}\right)-\frac{1}{2} H\left(\tilde{x}_{A}^{0}\right)^{2}\left(1+2 \ell \tilde{p}_{0}^{A @ A}\right)
\end{aligned}
$$

- the worldlines seen by Bob are found by applying a translation to the ones above and asking that one particle intercepts Bob's spacetime origin (this relates time and space translation parameters) $a^{1}=a^{0}+\ell a^{0} p_{0}^{A @ A}-\frac{1}{2} H \ell\left(a^{0}\right)^{2} p_{0}^{A @ A}$

$$
\begin{aligned}
& x_{B}^{1}=x_{B}^{0}\left(1+\ell p_{0}^{A @ A}\right)-H x_{B}^{0}\left(\frac{1}{2} x_{B}^{0}+\ell p_{0}^{A @ A}\left(x_{B}^{0}+a^{0}\right)\right), \\
& \tilde{x}_{B}^{1}=\tilde{x}_{B}^{0}\left(1+\ell \tilde{p}_{0}^{A @ A}\right)+\ell a^{0}\left(\tilde{p}_{0}^{A @ A}-p_{0}^{A @ A}\right)-H \tilde{x}_{B}^{0}\left(\frac{1}{2} \tilde{x}_{B}^{0}+\ell \tilde{p}_{0}^{A @ A}\left(\tilde{x}_{B}^{0}+a^{0}\right)\right) .
\end{aligned}
$$

- time at which second photon intercepts Bob's spatial origin:

$$
\tilde{x}_{B @ B}^{0}=\ell a^{0}\left[\left(p_{0}^{B @ B}-\tilde{p}_{0}^{B @ B}\right)\left(1+H a^{0}\right)\right]
$$

