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Motivations

✦ Hopf algebras provide consistent framework to introduce an invariant energy scale (as 
expected in QG) consistent with (deformed) spacetime symmetries 

✦ k-Poincaré was used to develop phenomenology associated to deformed Poincaré 
symmetry, in particular focussing on energy-dependent time of travel of relativistic 
particles 

✦ opportunities for phenomenology arise in contexts where spacetime curvature is 
actually non-negligible (early universe, propagation of photons from Gamma-ray 
Bursts..)  

✦ extension of results fond in kP to curved spacetime is non-trivial, as one would in 
general expect some sort of interplay between effects of curvature and of quantum 
symmetry deformation (alternatively, curvature in momentum space) 

✦ q-de Sitter provides a model for quantum-deformed symmetries associated to a curved 
(de Sitter) spacetime 
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de Sitter algebra

✦ 1+1 dimensional de Sitter manifold can be described as the 2-dim hypersurface 
embedded in a 3-dim Minkowski manifold  

✦ line element in flat-slicing coordinates (comoving coordinates)

✦ algebra of symmetries (first order in H)

✦ mass Casimir
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de Sitter particle kinematics

✦ evolution of phase space coordinates is given by Hamilton equations with the 
Hamiltonian given by the Casimir

✦ the massless condition                relates energy and spatial momentum:CdS = 0

✦ coordinate velocity:

✦ worldline

ẋ0 ⌘ {CdS , x0} = 2p0 ,

ẋ1 ⌘ {CdS , x1} = �2p1(1� 2H x0) ,

ṗ0 ⌘ {CdS , p0} = �2H p21 ,

ṗ1 ⌘ {CdS , p1} = 0 ,
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k-Poincaré algebra - bicrossproduct basis

✦ algebra of symmetries (first order in l )

✦ mass Casimir

{P0,P1} = 0 ,

{P0,N} = P1 ,

{P1,N} = P0 � `
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✦ coproducts and antipodes

�(P0) = P0 ⌦ I+ I⌦ P0 ,

�(P1) = P1 ⌦ I+ I⌦ P1 � ` P0 ⌦ P1 ,

�(N ) = N ⌦ I+ I⌦N � ` P0 ⌦N .

S(P0) = �P0 ,

S(P1) = �(1 + `P0)P1 ,

S(N ) = �(1 + `P0)N ,

✦ momenta live on a (portion of) de Sitter manifold
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Semiclassical approximation

✦ we are interested in studying the propagation of a free relativistic particle, 
without purely quantum effects (quantum correlations, fuzziness..) 

✦ the Planck-scale regime is in this case defined as the limit  where 
    
while keeping the Planck energy (                   ) finite 

~ ! 0

EP =

r
~c5
G

✦ in this semiclassical approximation, the symmetries of phase space are 
described by Poisson brackets satisfying the same relations as the commutators of 
the Hopf algebra under consideration 

✦ spacetime is defined via a classical phase-space construction - commutative 
coordinates are related to the non-commutative ones via an energy-dependent 
redefinition 

✦ the coproducts and antipodes enter in the analysis only to define finite 
translation, as discussed later (no multi-particle states) 



k-Poincaré particle kinematics

✦ evolution of phase space coordinates is given by Hamilton equations

✦ coordinate velocity:

✦ particle worldline
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duality between dS and kP

✦ de Sitter worldline (starting from the origin):

✦ de Sitter energy-momentum relation:

✦ k-Poincaré worldline (starting from the origin):

✦ k-Poincaré energy-momentum relation:

x1 = x0 � 1

2
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duality between dS and kP

4

same time at Alice (x̃0
@A = x0

@A) with di↵erent energies
(p̃@A

0 6=p@A
0 ).

This result (12) evidently characterizes lateshift as the
source of the peculiarities for the correlations between
emission times and detection times previously found in
the curved-momentum-space literature: Eq. (12) con-
firms that in presence of momentum-space curvature two
massless particles emitted simultaneously at Alice with
di↵erent energies (p̃@A

0 6= p@A
0 ) reach a distant detector

Bob at di↵erent times (x̃0
@B 6=x0

@B), indeed governed by
(12).

We stress again that the relativistic duality between
the two cases is exact: formulas (1),(2),(3),(4),(5) famil-
iar for dS spacetime get mapped into the exactly dual
formulas (7),(8),(9),(10),(11) for the novel case of dS mo-
mentum space. But the questions we typically ask exper-
imentally to these exactly dual pictures are not exactly
dual to each other: in both cases one is interested in
spacetime translations, since in both cases one is primar-
ily considering situations with spatially distant emitter
and detector. The relativistic duality we are exposing is
however so strong that it still a↵ects very significantly
the final results (6) and (12).

It is also useful to observe that the duality we are ana-
lyzing becomes trivial when no curvature is present: rel-
ativistic theories of Minkowski spacetime and relativistic
theories of Minkowski momentum space coincide (our du-
ality turns into a self-duality when curvature is absent).
In the Minkowski case massless particles with any dif-
ference in energy p̃@A

0 � p@A
0 emitted with any emission-

time di↵erence x0
@A � x̃0

@A at emitter Alice are then de-
tected at some distant detector Bob (at rest with respect
to the emitter) with same di↵erence of detection times
x0
@B � x̃0

@B = x0
@A � x̃0

@A and the same di↵erence of
energies p̃@B

0 � p@B
0 = p̃@A

0 � p@A
0 .

In Figs.1 and 2 we visualize an aspect of the duality
here exposed for the case when curvature is present, also
in reference to the self-duality present when there is no
curvature. For these visualization purposes we find useful
to rely on the correlations that the analysis we present
in later sections finds between time of detection at Bob
and energy of detection at Bob of a massless particle.
The presence of a horizontal dotted line in both Fig.1
and Fig.2 reflects the fact that in absence of curvature
the energy of detection is independent of the time of de-
tection (in absence of curvature there is no redshift, so
the energy of detection is automatically the same as the
energy of emission of the particle) and the time of detec-
tion is independent of the energy of detection (in absence
of curvature there is no lateshift, so the time of detection
is given, for massless particles of any energy, in terms of
the distance between emitter and detector).

Fig.1 also shows (solid line) the quantitative behaviour
of redshift produced by spacetime curvature: for fixed
time and energy of emission at Alice there is a correlation
(governed by the distance between Alice and Bob, left
implicit in figure) between the time of detection at Bob
and the energy of detection at Bob. This correlation is of

course governed by the distance between Alice and Bob,
left implicit in figure (but notice that the graph does
indicate the value of energy for x0

@B = 0 which is the
case with Alice as both the emitter and the detector, i.e.
no distance between emitter and detector). For the case
of de Sitter expansion this gives indeed lower values of
detection energy at higher values of detection time.
And Fig.2 also shows (solid line) the quantitative be-

haviour of lateshift produced by momentum-space cur-
vature. Here too lower values of detection energy are
found at higher values of detection time, but, as here
shown in Sec.V the exponential law governing these cor-
relations takes form dual to the corresponding exponen-
tial law found for the spacetime-curvature case.
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x

0
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Figure 1. We here show how, for fixed time and energy of emission
at Alice, there is a correlation between the time of detection at Bob
and the energy of detection at Bob, for the case of Minkowskian
spacetime (dotted line) and the case of dS spacetime (solid line).
The behaviour here shown for the dS-spacetime case, which is a
characteristic manifestation of redshift, is governed by Eq.(52) here
derived in the later Sec.IV.
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Figure 2. We here show how, for fixed time and energy of emission
at Alice, there is a correlation between the time of detection at Bob
and the energy of detection at Bob, for the case of Minkowskian
momentum space (dotted line) and the case of dS momentum space
(solid line). The behaviour here shown for the dS-momentum-space
case, which is a characteristic manifestation of lateshift, is governed
by Eq. (91) here derived in the later Sec.V.

III. TWO TYPES OF RELATIVE LOCALITY

A striking aspect of some of the studies triggered by the
recent interest in Planck-scale curved momentum space is
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at Alice, there is a correlation between the time of detection at Bob
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Figure 2. We here show how, for fixed time and energy of emission
at Alice, there is a correlation between the time of detection at Bob
and the energy of detection at Bob, for the case of Minkowskian
momentum space (dotted line) and the case of dS momentum space
(solid line). The behaviour here shown for the dS-momentum-space
case, which is a characteristic manifestation of lateshift, is governed
by Eq. (91) here derived in the later Sec.V.

III. TWO TYPES OF RELATIVE LOCALITY

A striking aspect of some of the studies triggered by the
recent interest in Planck-scale curved momentum space is

✦ correlation between time of detection and energy, for fixed energy and time 
of emission (de Sitter spacetime, all orders in H) - redshift 

✦ correlation between time of detection and energy, for fixed energy and time 
of emission (de Sitter momentum space, all orders in l ) - time delay

•Amelino-Camelia, Barcaroli, Gubitosi, Loret, 
Class.Quant.Grav. 30 (2013) 



q-de Sitter algebra [SOq(3, 1)]

✦ algebra of symmetries

✦ mass Casimir

{P0,P1} = H P1 ,

{P0,N} = P1 �H N ,

{P1,N} = cosh(w/2)
1� e�2

w P0
H

2w/H
� 1

H
sinh(w/2)e�

w P0
H

⇥ ,

C = H2 cosh(w/2)

w2/4
sinh

2
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wP0

2H

◆
� sinh(w/2)

w/2
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✦ coproducts and antipodes

�(P0) = P0 ⌦ I+ I⌦ P0 ,

�(P1) = P1 ⌦ I+ e�w
P0
H ⌦ P1 ,

�(N ) = N ⌦ I+ e�w
P0
H ⌦N .

S(P0) = �P0 ,

S(P1) = �ew
P0
H P1 ,

S(N ) = �ew
P0
H N ,

(same structure as the coalgebra of k-Poincaré)

� ⌘ ewP0/2H(P �HN)ewP0/2H(P �HN)�H2ewP0/2HNewP0/2HN

•Lukierski, Ruegg, Nowicki , Tolstoi, Phys. Lett. B264 (1991)  
•Lukierski, Nowicki,, Ruegg, Phys. Lett. B293 (1992) 
•Ballesteros, Herranz, del Olmo, Santander, Journal of Physics A: 
Mathematical and General 26(1993)  
•Ballesteros, Bruno, Herranz, Czech. J. Phys. 54 (2004)



qdS - contraction to dS and kP

the dimensionless parameter w can be constructed as a combination of the two 
relevant scales of the model, H and l. In particular an interesting choice is  

w= H l. In this case:

✦ the H → 0 limit gives the contraction to k-Poincaré algebra

✦ the l → 0 limit gives the contraction to de Sitter algebra algebra

This specific case allows to study the phenomenology of a model where 
curvature on both spacetime and momentum space is present and to investigate 
the effects of their interplay 

•Amelino-Camelia, Smolin, Starodubtsev, Class. Quant. Grav. 21(2004)  
•Marciano, Amelino-Camelia, Bruno, Gubitosi, Mandanici, Melchiorri, 
JCAP 1006 (2010) 



✦ algebra of symmetries (first order in l )

✦ mass Casimir

✦ coproducts and antipodes reduce to the ones of k-Poincaré

qdS - continued

if w= H l and at the first order in H, l and H l

{P0,P1} = H P1 ,
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{P1,N} = P0 � `
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✦ phase space defined by Poisson brackets:

✦ representation of generators

✦ representation of mass Casimir

qdS - representation on phase space

{xµ
, x
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{xµ
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Worldlines in phase space

✦ evolution of phase space coordinates is given by Hamilton equations with the 
Hamiltonian given by the Casimir

ẋ0 ⌘ {CqdS , x0} = 2p0 � `p21(1� 2H x0) ,

ẋ1 ⌘ {CqdS , x1} = �2p1(1 + ` p0)(1� 2H x0) ,

ṗ0 ⌘ {CqdS , p0} = �2H p21(1 + ` p0) ,

ṗ1 ⌘ {CqdS , p1} = 0 .

✦ the massless condition                relates energy and spatial momentum:CqdS = 0
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✦ coordinate velocity: v ⌘ ẋ1

ẋ0
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✦ worldline
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Worldlines in spacetime

BLACK: Minkowski  
RED: k-Poincaré 
BLUE: de Sitter 
GREEN: q-de Sitter
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✦ action of finite spacetime translations

qdS - finite translations

T{a0,a1} . F =
1X

n=0

1

n!
{�aµPµ, {. . . , {�aµPµ| {z }

n times

, F} . . . }

For a Hopf algebra one would  in general use the adjoint action. However the adjoint action 
for k-Poincaré (in bicrossproduct basis) reduces to ordinary action via commutators and the 
same holds for qdS since the coproducts and antipodes have same structure as in kP. 

✦ explicit form:

x0
B ⌘ T{a0,a1} . x

0
A = x0

A � a0 ,

x1
B ⌘ T{a0,a1} . x

1
A = x1

A(1 +Ha0)� a1(1 +
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2
Ha0) ,

pB0 ⌘ T{a0,a1} . p
A
0 = pA0 ,

pB1 ⌘ T{a0,a1} . p
A
1 = pA1 (1�Ha0) .

(same expression as standard de Sitter translations)



Energy-dependent redshift

the redshift is found comparing the energy of a particle measured by an 
observer local at emission (Alice) and the energy measured by an observer local 
at detection (Bob)

z ⌘ pA@A
0 � pB@B

0

pB@B
0

✦ evolution of energy along the particle’s worldline as inferred by Alice:
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✦ the energy measured by Bob is found by applying a translation to the one 
inferred by Alice (the translation is such that it connects Alice and Bob)
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Time delay

compare the times of arrival at the observer Bob of two photons emitted 
simultaneously by Alice in the origin of her reference frame, with different 
energies  

✦ worldlines of the two particles as seen by Alice:

✦ the worldlines seen by Bob are found by applying a translation to the ones 
above and asking that one particle intercepts Bob’s spacetime origin (this relates 
time and space translation parameters)

✦ time at which second photon intercepts Bob’s spatial origin:
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