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Quantum Space-time and Metastrings

Really quantum gravity

- in string theory, the underlying theory is quantum mechanically 
consistent (the 2d worldsheet theory), and the fields are interpreted 
as coordinatizing a target space-time
• geometrical structures (metric, …) are interpreted as associated with 

states of the string
• we use a built-in interpretation: 

• there is an emergent target space-time theory that at low energies reproduces 
local effective quantum field theories, and includes (quantum) gravity

- this is nice, but it cannot be the whole story
• any theory of quantum gravity contains two parameters,     and 

• interested in probing the theory in all regimes
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Quantum Space-time and Metastrings

Locality

- believe the key is to relax our notion of locality

- in metastring theory, relative locality is implemented by regarding 
space-time as a subspace of the target space of the string
• thought of as a choice of basis, i.e., a choice of polarization of phase 

space
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Absolute locality:

Relative locality:

space-time is independent of probe, 
an arena

space-time depends on the nature 
of a probe (e.g., its energy)
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Relative Locality and Metastrings

- Born reciprocity can then be built in to the theory
• a given space-time is only one choice of polarization

• energy-momentum on the same footing as space-time

• within a fully consistent theory of quantum gravity
• T-duality: in toroidal compactifications, string does not distinguish radius     

from 
• spectrum of string is simply relabeled, momentum and winding modes being 

exchanged

• T-duality can be thought of as acting non-trivially on a choice of 
polarization
• in fact, it can be thought of as a sort of  “Fourier transform”

• short and long distance are equivalent
• or, more precisely, T-duality exchanges momentum and space
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Quantum Space-time and Metastrings

Born Reciprocity and T-duality

- usually, in toroidal compactifications, we interpret short distance 
(radius) as long distance in a dual space-time

- however we can also directly relate this to a Fourier transform

- consider a string state

- define a Fourier transform of this state by

- extending         to the world sheet, we integrate out X to obtain a 
dual Polyakov path integral
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Metastrings

- a reformulation of the Polyakov (bosonic) string theory, written in 
such a way that T-duality acts linearly on coordinates
• the interpretation will be that this is putting space-time on an equal 

footing with energy-momentum

- this is a re-interpretation of the string path integral, and so is as 
well-defined as the usual quantum string theory
• the principle difference is a relaxation of boundary conditions, to allow 

general monodromies
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Metastring Path Integral

- the notation used by double field theory is useful here

- the     term is a total derivative, but it must be kept, as maps are not 
single-valued

- this is the classical action of the ‘flat metastring’
• coordinates            , and                are geometric structures on 

7

XA ⌘
✓

Xµ/�
Yµ/"

◆
, ⌘AB =

✓
0 �
�T 0

◆
, HAB ⌘

✓
h 0
0 h�1

◆
, !AB ⌘

✓
0 �

��T 0

◆

S =
1

4⇡

Z ⇣
@⌧XA(⌘AB + !AB)@�XB � @�XAHAB@�XB

⌘

!

�" = ~, �

"
= ↵0

X 2 P (⌘,!,H)

Born geometry expect that                 will become “curved”(⌘,!,H)

TP



Quantum Space-time and Metastrings

Metastring Path Integral

- this is a traditional sigma-model discussion, with some apparent 
relation with generalized geometry
• however, note that we speak in terms of        not                    as there 

is no preferred 

- in fact, we now believe that the proper interpretation of                    
is through the geometry of quantization
• a choice of polarization is a choice of a space-time within    , but the 

most general such choice is a modular polarization

•               arise as a parameterization of such quantizations
• such a quantization results in a notion of quantum space-time

• large space-times result as a ‘many-body’ phenomenon, through a process we 
refer to as ‘extensification’
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Phase Space and the Heisenberg Group

- let’s recall some familiar notions of quantization

- in fact, I will focus on the Heisenberg Group
• generated by           which satisfy the algebraic relation

- it will be convenient to introduce a length scale    and a momentum 
scale   , with 

- then 

- or more compactly
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Heisenberg group

- recall Heisenberg group       generated by Weyl ops

- these form a central extension of the translation algebra

- projection                     (where                   ) defines a line bundle 
over 
• states are sections of degree one

• (geometric) quantization: take Lagrangian          : states descend to
•  more generally, want a maximally commuting subalgebra, and the 

representation that diagonalizes it
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Lagrangian Submanifolds

- a Lagrangian submanifold is a maximally isotropic subspace L with 

• e.g.,                          defines a Lagrangian submanifold, “space”
• indeed 

- this is at least the classical characterization

- borrowing from notions of non-commutative algebra, we can say 
that a Lagrangian submanifold is a maximally commutative subgroup of 
the Heisenberg group
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Quantum vs. Classical Lagrangians

- if we accept this notion of a Lagrangian, then the quantum regime is 
very different than the classical regime
• e.g.,                           requires either f or g to be constant
• but                          requires only that the functions be 

commensurately periodic
• i.e., 

- similar considerations led Aharonov to introduce modular variables 
to describe purely quantum phenomena
• that is, introduce 

• quantum (or modular) Lagrangian
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Quantum Lagrangians

- the quantum Lagrangian is analogous to a Brillouin cell in CMT
• the volume and shape of the cell are given by        (i.e.,       )

• uncertainty principle: can specify a point in modular cell, but if so, can’t 
say which cell you are in
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Modular Quantizations

- so this means that there is a more general notion of quantization, 
beyond that of geometric quantization
• instead of selecting a classical polarization L, we can choose a modular 

polarization

- in terms of the Heisenberg group, all that is happening is that in 
order to have a commutative subgroup, we need only 

- this defines a lattice 

- finally, we specify a `lift’ of the lattice from     to 
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Quantum Lagrangians

- maximally commuting subgroups     of the Heisenberg group 
correspond to lattices that are integral self-dual wrt 

- given                  , there is a lift to 

    where         satisfies the co-cycle condition

- one can parameterize a solution to the co-cycle condition by 
introducing a symmetric bilinear form     and setting
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Hilbert Space and the Modular Vacuum

- when we choose a classical Lagrangian L, there is a special state that 
we associate with the vacuum
• it is translation invariant 
• here, we interpret this translation invariant state as “empty space”

- in modular quantization, there is no such translation invariant state

- the best we can do is to choose a state that minimizes an `energy’
• this invariably requires the introduction of another symmetric bilinear 

form, which we call H
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Modular Quantization

- so modular quantization involves the introduction of three quadratic 
forms   

- comments:
• Stone- von Neumann theorem: all representations of       are unitarily 

equivalent
• normally, we think of this as a choice of basis in phase space (a choice of 

polarization or classical Lagrangian), and all such choices are related by 
Fourier transform.

• similarly, one can pass from a classical polarization to a modular polarization 
via Zak transform. 

• there is a connection on the line bundle over phase space that has unit 
flux through a modular cell
• vacuum state must have at least one zero in cell —> theta functions
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Quadratic forms

- symplectic form

- ‘polarization metric’

- ‘quantum metric’

- recall we identified 

- the ratio         defines a tension
• if this is identified with           , it is enormous (                      )
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Metastrings

- is there any real evidence that we should regard all this as 
connected to gravity in some way?

- in fact, the data                    is in one-to-one correspondence with 
the geometric data underlying metastrings, which indeed has the 
string length built in

- as well, the vertex operator algebra of the string gives copies of the 
Heisenberg group
• in the zero-mode sector, with decoration by oscillator modes
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- to reiterate, when the gravitational tension is large, the quantum 
metric reduces to a spatial metric

- large space          large tension (weak gravity)

- this suggests that we should regard modular quantization as a 
gravitization of the quantum

- the modular cell is a quantum unit of space-time
• more generally, we can ‘extensify’ the modular cell by tensoring many 

together (resulting in large flux)
• very similar to IQHE systems

20

 !

ds2H =
1

�2


habdq

a ⌦ dqb +
�2

"2
habdpa ⌦ dpb

�
! habdq

a ⌦ dqb



Quantum Space-time and Metastrings

Metastrings

- in the Polyakov string, the target space is interpreted as space-time

- in the metastring, the target is a phase space
• space-time itself would be a Lagrangian submanifold

• if we suppose this to be a modular Lagrangian, it is associated with a lattice 
which turns out to be unique!

• this comes from a careful study of the operator algebra of the string, closely 
associated with the analysis of the Heisenberg group

• mutual locality of physical states, etc., require the lattice to be Lorentzian even 
self-dual

• products of Borcherds algebras: all the usual string backgrounds (and 
presumably many more) are ‘extensifications’ of these algebras

-
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Causality?

- NB: same as “Narain lattice of fully compactified space-time”
• this is the traditional interpretation of this lattice, but here it is non-

sensical because it would have no apparent causal interpretation

- so one way to view the modular quantization is as a potentially 
causal interpretation
• we know what causality is in local field theory

• operators commute at space-like separation

• (requires a ‘large’ space-time for the QFT to live in)

• the metastring is causal from the worldsheet point of view
• is it causal from the modular target space-time point of view?
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Lorentz Invariance

- Lorentz preserves all these structures
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Lorentz Invariance

- relative locality means that the answer is no!

- a space-time is a choice of polarization
• each observer makes his own choice
• each observer sees the discreteness
• Lorentz acts to change the polarization, restoring Lorentz invariance

- compare to spin
• choose a quantization axis, get a set of discrete spin states

• could regard as a discretization of sphere, breaking SO(3)

• but rotations act to rotate the quantization axis (choice of polarization)
• because the spin operators do not commute, the states of one axis are unitarily related to 

those of any other

- for Lorentz invariance to be unbroken, we need:

• non-commutative (√ — torus in phase space)
• relative locality: space-time is NOT an arena shared by all observers; the arena is a ‘many-

body’ interpretation/approximation
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Final Remarks

- one of the most fundamental conundrums in quantum gravity is the 
lack of understanding of how continuous symmetries (such as 
Lorentz) can be made consistent with the existence of a 
fundamental scale 

- here this is manifested by the apparent breaking of Lorentz to a 
discrete subgroup by the presence of the lattice.
• but in fact, in the modular interpretation, this is not so

• each observer (i.e., each single free string) can ‘make its own choice’ of 
quantum Lagrangian

• closely analogous to choice of a quantization axis for quantum spins

• because it is a lattice in (non-commutative) phase space, each choice is 
unitarily equivalent

• our usual notion of space-time as a fixed arena for all observers is a classical 
(many body) interpretation
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Classical and Quantum Space-times

27

- if the Born geometry is the target, where is space-time?
• Classical answer: space-time is a chosen Lagrangian submanifold of 

• a choice of polarization

• T-duality operations (canonical transformations) change this choice
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Classical and Quantum Space-times

27

• Quantum answer: space-time is any commutative sub-algebra
• we refer to this as ‘modular space-time’

• precise analogy to generic representations of the Heisenberg group in 
ordinary quantum mechanics

• usual ‘classical’ space-times obtained by taking a certain limit, analogous to 
the Stone-von Neumann map to the Schrödinger representation

• this is a process we refer to as ‘extensification’

• generally, we see space-time at finite    and ~ ↵0

- if the Born geometry is the target, where is space-time?
• Classical answer: space-time is a chosen Lagrangian submanifold of 

• a choice of polarization

• T-duality operations (canonical transformations) change this choice
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Born Geometry

-    is closed and non-degenerate — suggests symplectic form
•        together then define a complex structure

-    is neutral
•       together define a chiral structure 

- bi-Lagrangian structure:                   with
•       together define an involution 

- ‘hyper-para-Kahler’ (or just ‘Born geometry’)
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