Tomasz Miller

Joint project with Michał Eckstein (UJ & CC, Cracow, Poland)

arXiv:1510.06386 [math-ph]

Warsaw University of Technology & Copernicus Center (Cracow)

XXXVII Max Born Symposium, Wrocław, 7th July 2016

Tomasz Miller (WUT & CC)

Causality for probability measures

7th July 2016 1 / 9

- Causality (in the context of Lorentzian geometry)
 certain binary relation between events (= spacetime points).
- Pointlike events are **not** directly observable!
 - Measuring apparatus' imperfection
 - Too precise measurement => black hole formation
 - Quantum effects non-locality
- Goal: extend the causality relation to "nonlocal events"
 → (Borel) probability measures.
 - Classical given by densities $d\mu = \frac{\rho}{\int d^n x} d^n x$
 - ullet Quantum the 'modulus-squared' principle $d\mu = |\psi|^2 d^n x$

- Causality (in the context of Lorentzian geometry)
 certain binary relation between events (= spacetime points).
- Pointlike events are **not** directly observable!
 - Measuring apparatus' imperfection
 - Too precise measurement \implies black hole formation
 - Quantum effects non-locality
- Goal: extend the causality relation to "nonlocal events"
 → (Borel) probability measures.
 - Classical given by densities $d\mu = rac{
 ho}{1+
 ho d^n x} d^n x$
 - ullet Quantum the 'modulus-squared' principle $d\mu = |\psi|^2 d^n x$

- Causality (in the context of Lorentzian geometry)
 certain binary relation between events (= spacetime points).
- Pointlike events are **not** directly observable!
 - Measuring apparatus' imperfection
 - Too precise measurement \Longrightarrow black hole formation
 - Quantum effects non-locality
- Goal: extend the causality relation to "nonlocal events"
 → (Borel) probability measures.
 - Classical given by densities $d\mu = rac{
 ho}{1+
 ho d^n x} d^n x$
 - ullet Quantum the 'modulus-squared' principle $d\mu = |\psi|^2 d^n x$

- Causality (in the context of Lorentzian geometry)
 certain binary relation between events (= spacetime points).
- Pointlike events are **not** directly observable!
 - Measuring apparatus' imperfection
 - Too precise measurement \Longrightarrow black hole formation
 - Quantum effects non-locality
- Goal: extend the causality relation to "nonlocal events"
 → (Borel) probability measures.
 - Classical given by densities $d\mu = rac{
 ho}{1+
 ho d^n x} d^n x$
 - Quantum the 'modulus-squared' principle $d\mu = |\psi|^2 d^n x$

- Causality (in the context of Lorentzian geometry)
 certain binary relation between events (= spacetime points).
- Pointlike events are **not** directly observable!
 - Measuring apparatus' imperfection
 - Too precise measurement \Longrightarrow black hole formation
 - Quantum effects non-locality
- Goal: extend the causality relation to "nonlocal events"
 → (Borel) probability measures.
 - Classical given by densities $d\mu = \frac{\rho}{1 + od^n x} d^n x$
 - ullet Quantum the 'modulus-squared' principle $d\mu = |\psi|^2 d^n x$

- Causality (in the context of Lorentzian geometry)
 certain binary relation between events (= spacetime points).
- Pointlike events are **not** directly observable!
 - Measuring apparatus' imperfection
 - Too precise measurement \Longrightarrow black hole formation
 - Quantum effects non-locality
- Goal: extend the causality relation to "nonlocal events"
 → (Borel) probability measures.
 - Classical given by densities $d\mu = \frac{\rho}{\int d^n x} d^n x$
 - Quantum the 'modulus-squared' principle $d\mu = |\psi|^2 d^n x$

- Causality (in the context of Lorentzian geometry)
 certain binary relation between events (= spacetime points).
- Pointlike events are **not** directly observable!
 - Measuring apparatus' imperfection
 - Too precise measurement \Longrightarrow black hole formation
 - Quantum effects non-locality
- Goal: extend the causality relation to "nonlocal events"
 → (Borel) probability measures.
 - Classical given by densities $d\mu = \frac{\rho}{\int_{M} \rho d^n x} d^n x$
 - Quantum the 'modulus-squared' principle $d\mu = |\psi|^2 d^n x$

- Causality (in the context of Lorentzian geometry)
 certain binary relation between events (= spacetime points).
- Pointlike events are **not** directly observable!
 - Measuring apparatus' imperfection
 - Too precise measurement \Longrightarrow black hole formation
 - Quantum effects non-locality
- - Classical given by densities $d\mu = \frac{\rho}{\int_{M} \rho d^n x} d^n x$
 - Quantum the 'modulus-squared' principle $d\mu = |\psi|^2 d^n x$

The **causal precedence** relation \leq on a given spacetime \mathcal{M} $p \prec q \Leftrightarrow \exists$ future-directed causal curve γ from p to q, or p = q

 $\text{Recall } J^+ := \{(p,q) \in \mathcal{M}^2: \ p \preceq q\}, \quad J^+(p) := \{q \in \mathcal{M}: \ p \preceq q\}$

• Goal: Define $\mu \leq \nu$ for $\mu, \nu \in \mathscr{P}(\mathcal{M})$

• Measures can be spread also in the time-like direction.

The **causal precedence** relation \preceq on a given spacetime \mathcal{M}

 $p \preceq q \ \Leftrightarrow \ \exists \ {\rm future-directed} \ {\rm causal} \ {\rm curve} \ \gamma \ {\rm from} \ p \ {\rm to} \ q, \ {\rm or} \ p = q$

 $\text{Recall } J^+ := \{ (p,q) \in \mathcal{M}^2 : \ p \preceq q \}, \quad J^+(p) := \{ q \in \mathcal{M} : \ p \preceq q \}$

• Goal: Define $\mu \preceq \nu$ for $\mu, \nu \in \mathscr{P}(\mathcal{M})$

Measures can be spread also in the time-like direction.

Tomasz Miller (WUT & CC)

The causal precedence relation \leq on a given spacetime \mathcal{M} $p \leq q \iff \exists$ future-directed causal curve γ from p to q, or p = qRecall $J^+ := \{(p,q) \in \mathcal{M}^2 : p \leq q\}, \quad J^+(p) := \{q \in \mathcal{M} : p \leq q\}$

• Goal: Define $\mu \preceq \nu$ for $\mu, \nu \in \mathscr{P}(\mathcal{M})$

Measures can be spread also in the time-like direction.

Tomasz Miller (WUT & CC)

Causality for probability measures

The causal precedence relation \leq on a given spacetime \mathcal{M} $p \leq q \iff \exists$ future-directed causal curve γ from p to q, or p = qRecall $J^+ := \{(p,q) \in \mathcal{M}^2 : p \leq q\}, \quad J^+(p) := \{q \in \mathcal{M} : p \leq q\}$

• Goal: Define $\mu \preceq \nu$ for $\mu, \nu \in \mathscr{P}(\mathcal{M})$

• Measures can be spread also in the time-like direction.

Tomasz Miller (WUT & CC)

Causality for probability measures

7th July 2016

3/9

Let $\mathcal M$ be a spacetime. For $\mu,\nu\in\mathscr P(\mathcal M)$ we define

$$\begin{split} \mu \preceq \nu & \iff & \exists \, \omega \in \mathscr{P}(\mathcal{M}^2) \text{ such that:} \\ \bullet \, \forall_{A \text{ - Borel}} \quad \omega(A \times \mathcal{M}) = \mu(A), \quad \omega(M \times A) = \nu(A), \\ \bullet \, \omega(J^+) = 1. \end{split}$$

Math caveat: J^+ must be a Borel set! Luckily, this is always true.

ullet ω can be called a causal coupling or a causal transference plan.

• For $\mu = \delta_p$, $\nu = \delta_q$, the only coupling is $\omega = \delta_{(p,q)}$ and so $\delta_p \preceq \delta_q$ iff $p \preceq q$.

Let $\mathcal M$ be a spacetime. For $\mu,\nu\in\mathscr P(\mathcal M)$ we define

$$\begin{split} \mu \preceq \nu & \iff \exists \, \omega \in \mathscr{P}(\mathcal{M}^2) \text{ such that:} \\ \bullet \, \forall_{A \text{ - Borel}} \quad \omega(A \times \mathcal{M}) = \mu(A), \quad \omega(M \times A) = \nu(A), \\ \bullet \, \omega(J^+) = 1. \end{split}$$

Math caveat: J^+ must be a Borel set! Luckily, this is always true.

ullet ω can be called a causal coupling or a causal transference plan.

• For $\mu = \delta_p$, $\nu = \delta_q$, the only coupling is $\omega = \delta_{(p,q)}$ and so $\delta_p \preceq \delta_q$ iff $p \preceq q$.

Let $\mathcal M$ be a spacetime. For $\mu,\nu\in\mathscr P(\mathcal M)$ we define

$$\begin{split} \mu \preceq \nu & \iff \exists \, \omega \in \mathscr{P}(\mathcal{M}^2) \text{ such that:} \\ \bullet \, \forall_{A \text{ - Borel}} \quad \omega(A \times \mathcal{M}) = \mu(A), \quad \omega(M \times A) = \nu(A), \\ \bullet \, \omega(J^+) = 1. \end{split}$$

Math caveat: J^+ must be a Borel set! Luckily, this is always true.

ullet ω can be called a causal coupling or a causal transference plan.

• For $\mu = \delta_p$, $\nu = \delta_q$, the only coupling is $\omega = \delta_{(p,q)}$ and so $\delta_p \preceq \delta_q$ iff $p \preceq q$.

Let $\mathcal M$ be a spacetime. For $\mu,\nu\in\mathscr P(\mathcal M)$ we define

$$\begin{split} \mu \preceq \nu & \iff \exists \, \omega \in \mathscr{P}(\mathcal{M}^2) \text{ such that:} \\ \bullet \, \forall_{A \text{ - Borel}} \quad \omega(A \times \mathcal{M}) = \mu(A), \quad \omega(M \times A) = \nu(A), \\ \bullet \, \omega(J^+) = 1. \end{split}$$

Math caveat: J^+ must be a Borel set! Luckily, this is always true.

- ullet ω can be called a causal coupling or a causal transference plan.
- For $\mu = \delta_p$, $\nu = \delta_q$, the only coupling is $\omega = \delta_{(p,q)}$ and so $\delta_p \preceq \delta_q$ iff $p \preceq q$.

Let $\mathcal M$ be a spacetime. For $\mu,\nu\in\mathscr P(\mathcal M)$ we define

$$\begin{split} \mu \preceq \nu & \iff & \exists \, \omega \in \mathscr{P}(\mathcal{M}^2) \text{ such that:} \\ & \bullet \, \forall_{A \text{ - Borel}} \quad \omega(A \times \mathcal{M}) = \mu(A), \quad \omega(M \times A) = \nu(A), \\ & \bullet \, \omega(J^+) = 1. \end{split}$$

Math caveat: J^+ must be a Borel set! Luckily, this is always true.

• ω can be called a causal coupling or a causal transference plan.

• For
$$\mu = \delta_p$$
, $\nu = \delta_q$, the only coupling is $\omega = \delta_{(p,q)}$ and so $\delta_p \preceq \delta_q$ iff $p \preceq q$.

Each infinitesimal part of the probability measure should travel along a future-directed causal curve.

 $\omega \text{ couples } \mu \text{ with } \nu$ $\Rightarrow \exists \{\gamma_{p,q}\}_{p \in \text{supp } \mu, q \in \text{supp } \nu}$ $\omega(J^+) = 1$ $\Rightarrow \gamma_{p,q} - \text{causal fut.-dir.}$

Each infinitesimal part of the probability measure should travel along a future-directed causal curve.

$$\begin{split} \omega \text{ couples } \mu \text{ with } \nu \\ \Rightarrow \exists \{\gamma_{p,q}\}_{p \in \operatorname{supp} \mu, q \in \operatorname{supp} \nu} \\ \omega(J^+) &= 1 \\ \Rightarrow \gamma_{p,q} - \operatorname{causal fut.-dir.} \end{split}$$

7th July 2016 5/9

Each infinitesimal part of the probability measure should travel along a future-directed causal curve.

$$\begin{split} \omega \text{ couples } \mu \text{ with } \nu \\ \Rightarrow \exists \{\gamma_{p,q}\}_{p \in \operatorname{supp} \mu, q \in \operatorname{supp} \nu} \\ \omega(J^+) &= 1 \\ \Rightarrow \gamma_{p,q} - \operatorname{causal fut.-dir.} \end{split}$$

Causality for probability measures

7th

Each infinitesimal part of the probability measure should travel along a future-directed causal curve.

$$\begin{split} \omega \text{ couples } \mu \text{ with } \nu \\ \Rightarrow \exists \{\gamma_{p,q}\}_{p \in \operatorname{supp} \mu, q \in \operatorname{supp} \nu} \\ \omega(J^+) &= 1 \\ \Rightarrow \gamma_{p,q} - \operatorname{causal fut.-dir.} \end{split}$$

Causality for probability measures

Characterisations of causality

Tomasz Miller (WUT & CC)

Causality for probability measures

7th July 2016 6/9

Characterisations of causality

\mathcal{M} – causally simple (i.e. no causal loops + J^+ closed)

$$\mu \preceq \nu \quad \iff \quad \forall \operatorname{compact} \mathcal{K} \subseteq \operatorname{supp} \mu \quad \mu(\mathcal{K}) \leq \nu(J^+(\mathcal{K}))$$

Tomasz Miller (WUT & CC)

Causality for probability measures

7th July 2016

6 / 9

Characterisations of causality

\mathcal{M} – globally hyperbolic (i.e. admits a Cauchy hypersurface)

$$\mu \preceq \nu \quad \Longleftrightarrow \quad \forall \operatorname{Cauchy hypersurface} \, \mathcal{S} \quad \mu(J^+(\mathcal{S})) \leq \nu(J^+(\mathcal{S}))$$

Tomasz Miller (WUT & CC)

Causality for probability measures

7th July 2016

6/9

- $\bullet\,$ Wave packet formalism on $(n+1)\text{-}\mathsf{dim}\,$ Minkowski spacetime.
- The Schrödinger equation $i\hbar\partial_t\psi = \hat{H}\psi$.
- ullet Any wave function ψ yields a measure-valued map

 $t \mapsto \mu_t \in \mathscr{P}(\mathbb{R}^{n+1}), \qquad d\mu_t = \delta_t \times \|\psi(t,x)\|^2 d^n x.$

- Is the quantum evolution causal, i.e. $\mu_s \preceq \mu_t$ if s < t?
 - Causality of quantum evolution is a Lorentz-invariant notion!
 - Dirac equation does yield a causal evolution!
 - Evolution driven by $\hat{H} = \sqrt{\hat{p}^2 + m^2}$ is not causal!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- $\bullet\,$ Wave packet formalism on $(n+1)\text{-}\mathrm{dim}$ Minkowski spacetime.
- The Schrödinger equation $i\hbar\partial_t\psi = \hat{H}\psi$.
- ullet Any wave function ψ yields a measure-valued map

 $t \mapsto \mu_t \in \mathscr{P}(\mathbb{R}^{n+1}), \qquad d\mu_t = \delta_t \times \|\psi(t,x)\|^2 d^n x.$

- Is the quantum evolution causal, i.e. $\mu_s \preceq \mu_t$ if s < t?
 - Causality of quantum evolution is a Lorentz-invariant notion!
 - Dirac equation does yield a causal evolution!
 - Evolution driven by $\hat{H} = \sqrt{\hat{p}^2 + m^2} \text{ is not causal!}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Wave packet formalism on (n+1)-dim Minkowski spacetime.
- The Schrödinger equation $i\hbar\partial_t\psi = \hat{H}\psi$.
- ullet Any wave function ψ yields a measure-valued map

 $t \mapsto \mu_t \in \mathscr{P}(\mathbb{R}^{n+1}), \qquad d\mu_t = \delta_t \times \|\psi(t,x)\|^2 d^n x.$

• Is the quantum evolution causal, i.e. $\mu_s \preceq \mu_t$ if s < t?

- Causality of quantum evolution is a Lorentz-invariant notion!
- Dirac equation does yield a causal evolution!
- Evolution driven by $\hat{H} = \sqrt{\hat{p}^2 + m^2}$ is not causal!

(日) (得) (日) (日) (日) (日)

- Wave packet formalism on (n+1)-dim Minkowski spacetime.
- The Schrödinger equation $i\hbar\partial_t\psi = \hat{H}\psi$.
- ullet Any wave function ψ yields a measure-valued map

 $t \mapsto \mu_t \in \mathscr{P}(\mathbb{R}^{n+1}), \qquad d\mu_t = \delta_t \times \|\psi(t,x)\|^2 d^n x.$

- Is the quantum evolution causal, i.e. $\mu_s \preceq \mu_t$ if s < t?
 - Causality of quantum evolution is a Lorentz-invariant notion!
 - Dirac equation does yield a causal evolution!
 - Evolution driven by $\hat{H} = \sqrt{\hat{p}^2 + m^2}$ is not causal!

(日) (得) (日) (日) (日) (日)

- Wave packet formalism on (n+1)-dim Minkowski spacetime.
- The Schrödinger equation $i\hbar\partial_t\psi = \hat{H}\psi$.
- \bullet Any wave function ψ yields a measure-valued map

$$t \mapsto \mu_t \in \mathscr{P}(\mathbb{R}^{n+1}), \qquad d\mu_t = \delta_t \times \|\psi(t,x)\|^2 d^n x.$$

• Is the quantum evolution causal, i.e. $\mu_s \preceq \mu_t$ if s < t?

- Causality of quantum evolution is a Lorentz-invariant notion
- Dirac equation does yield a causal evolution!
- Evolution driven by $\hat{H} = \sqrt{\hat{p}^2 + m^2}$ is not causal!

・ 同 ト ・ ヨ ト ・ ヨ ト

- Wave packet formalism on (n + 1)-dim Minkowski spacetime.
- The Schrödinger equation $i\hbar\partial_t\psi = \hat{H}\psi$.
- \bullet Any wave function ψ yields a measure-valued map

$$t \mapsto \mu_t \in \mathscr{P}(\mathbb{R}^{n+1}), \qquad d\mu_t = \delta_t \times \|\psi(t,x)\|^2 d^n x.$$

• Is the quantum evolution causal, i.e. $\mu_s \preceq \mu_t$ if s < t?

- Causality of quantum evolution is a Lorentz-invariant notion!
- Dirac equation does yield a causal evolution!
- Evolution driven by $\hat{H} = \sqrt{\hat{p}^2 + m^2}$ is not causal!

Image: A Image: A

Tomasz Miller (WUT & CC)

Causality for probability measures

7th July 2016 7 / 9

- Wave packet formalism on (n + 1)-dim Minkowski spacetime.
- The Schrödinger equation $i\hbar\partial_t\psi = \hat{H}\psi$.
- \bullet Any wave function ψ yields a measure-valued map

$$t \mapsto \mu_t \in \mathscr{P}(\mathbb{R}^{n+1}), \qquad d\mu_t = \delta_t \times \|\psi(t,x)\|^2 d^n x.$$

• Is the quantum evolution causal, i.e. $\mu_s \preceq \mu_t$ if s < t?

- Causality of quantum evolution is a Lorentz-invariant notion!
- Dirac equation does yield a causal evolution!
- Evolution driven by $\hat{H} = \sqrt{\hat{p}^2 + m^2}$ is not causal!

A B A A B A

- Wave packet formalism on (n + 1)-dim Minkowski spacetime.
- The Schrödinger equation $i\hbar\partial_t\psi = \hat{H}\psi$.
- ullet Any wave function ψ yields a measure-valued map

$$t \mapsto \mu_t \in \mathscr{P}(\mathbb{R}^{n+1}), \qquad d\mu_t = \delta_t \times \|\psi(t,x)\|^2 d^n x.$$

• Is the quantum evolution causal, i.e. $\mu_s \preceq \mu_t$ if s < t?

- Causality of quantum evolution is a Lorentz-invariant notion!
- Dirac equation does yield a causal evolution!
- Evolution driven by $\hat{H} = \sqrt{\hat{p}^2 + m^2}$ is not causal!

• Consequence: localisation vs causal properties of wave packets

- Hegerfeldt's theorem: Evolution driven by $\hat{H} \ge 0$ of a *compactly* supported wave function breaks causality infinite tails appear immediately.
- Our formalism \Rightarrow Acausality is a property of the system and not of a state.
- Beyond the wave packet formalism: QFT, gauge theories, QG?
- C^* -algebra of observables \rightarrow causality in the space of states ("noncommutative spacetimes") [N. Franco, M. Eckstein 2013–2016]

- Consequence: localisation vs causal properties of wave packets
 - Hegerfeldt's theorem: Evolution driven by $\hat{H} \ge 0$ of a compactly supported wave function breaks causality infinite tails appear immediately.
 - Our formalism \Rightarrow Acausality is a property of the system and not of a state.
- Beyond the wave packet formalism: QFT, gauge theories, QG?
- C^* -algebra of observables \rightarrow causality in the space of states ("noncommutative spacetimes") [N. Franco, M. Eckstein 2013–2016]

- Consequence: localisation vs causal properties of wave packets
 - Hegerfeldt's theorem: Evolution driven by $\hat{H} \ge 0$ of a compactly supported wave function breaks causality infinite tails appear immediately.
 - $\bullet~{\rm Our~formalism}$ \Rightarrow Acausality is a property of the system and not of a state.
- Beyond the wave packet formalism: QFT, gauge theories, QG?
- C^* -algebra of observables \rightarrow causality in the space of states ("noncommutative spacetimes") [N. Franco, M. Eckstein 2013–2016]

- Consequence: localisation vs causal properties of wave packets
 - Hegerfeldt's theorem: Evolution driven by $\hat{H} \ge 0$ of a compactly supported wave function breaks causality infinite tails appear immediately.
 - $\bullet~{\rm Our~formalism} \Rightarrow {\rm Acausality~is~a}$ property of the system and not of a state.
- Beyond the wave packet formalism: QFT, gauge theories, QG?
- C^* -algebra of observables \rightarrow causality in the space of states ("noncommutative spacetimes") [N. Franco, M. Eckstein 2013–2016]

- Consequence: localisation vs causal properties of wave packets
 - Hegerfeldt's theorem: Evolution driven by $\hat{H} \ge 0$ of a compactly supported wave function breaks causality infinite tails appear immediately.
 - $\bullet~{\rm Our~formalism} \Rightarrow {\rm Acausality~is~a}$ property of the system and not of a state.
- Beyond the wave packet formalism: QFT, gauge theories, QG?
- C^* -algebra of observables \rightarrow causality in the space of states ("noncommutative spacetimes") [N. Franco, M. Eckstein 2013–2016]

[R. Penrose, Road to Reality, 2004]

Causality for probability measures

Thank you for your attention!

- M. Eckstein, T. Miller: Causality for nonlocal phenomena, arXiv:1510.06386.
- N. Franco, M. Eckstein: An algebraic formulation of causality for noncommutative geometry, Classical and Quantum Gravity 30 (2013) 135007, arXiv:1212.5171.
- M. Eckstein and N. Franco: *Causal structure for noncommutative geometry*, Frontiers of Fundamental Physics 14 (2015) PoS(FFP14)138.