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Goal and motivations

Causality (in the context of Lorentzian geometry)
= certain binary relation between events (= spacetime points).

Pointlike events are not directly observable!

Measuring apparatus' imperfection
Too precise measurement =⇒ black hole formation
Quantum e�ects � non-locality

Goal: extend the causality relation to �nonlocal events�
 (Borel) probability measures.

Classical � given by densities dµ = ρ∫
M ρdnx

dnx

Quantum � the `modulus-squared' principle dµ = |ψ|2dnx
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Goal and motivations

The causal precedence relation � on a given spacetimeM

p � q ⇔ ∃ future-directed causal curve γ from p to q, or p = q

Recall J+ := {(p, q) ∈M2 : p � q}, J+(p) := {q ∈M : p � q}

Goal: De�ne µ � ν for µ, ν ∈P(M)

Measures can be spread also in the time-like direction.
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Causality for probability measures

De�nition [M. Eckstein, TM '15]

LetM be a spacetime. For µ, ν ∈P(M) we de�ne

µ � ν ⇐⇒
def

∃ω ∈P(M2) such that:

• ∀A � Borel ω(A×M) = µ(A), ω(M ×A) = ν(A),

• ω(J+) = 1.

Math caveat: J+ must be a Borel set! Luckily, this is always true.

ω can be called a causal coupling or a causal transference plan.

For µ = δp, ν = δq, the only coupling is ω = δ(p,q) and so δp � δq i�
p � q.
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Causality for probability measures

Each in�nitesimal part of the probability measure should travel

along a future-directed causal curve.

ω couples µ with ν

⇒ ∃ {γp,q}p∈ suppµ, q ∈ supp ν

ω(J+) = 1

⇒ γp,q − causal fut.-dir.
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Characterisations of causality

M � causally simple (i.e. no causal loops + J+ closed)

µ � ν ⇐⇒ ∀ compact K ⊆ supp µ µ(K) ≤ ν(J+(K))
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Characterisations of causality

M � globally hyperbolic (i.e. admits a Cauchy hypersurface)

µ � ν ⇐⇒ ∀Cauchy hypersurface S µ(J+(S)) ≤ ν(J+(S))
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Causal evolution in QM

Wave packet formalism on (n+ 1)-dim Minkowski spacetime.

The Schrödinger equation i~∂tψ = Ĥψ.

Any wave function ψ yields a measure-valued map

t 7→ µt ∈P(Rn+1), dµt = δt × ‖ψ(t, x)‖2 dnx.

Is the quantum evolution causal, i.e. µs � µt if s < t?

Causality of quantum
evolution is a
Lorentz-invariant notion!

Dirac equation does yield
a causal evolution!

Evolution driven by
Ĥ =

√
p̂2 +m2 is not

causal!
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Ĥ =

√
p̂2 +m2 is not

causal!

Tomasz Miller (WUT & CC) Causality for probability measures 7th July 2016 7 / 9



Causal evolution in QM

Wave packet formalism on (n+ 1)-dim Minkowski spacetime.

The Schrödinger equation i~∂tψ = Ĥψ.
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Any wave function ψ yields a measure-valued map

t 7→ µt ∈P(Rn+1), dµt = δt × ‖ψ(t, x)‖2 dnx.

Is the quantum evolution causal, i.e. µs � µt if s < t?

Causality of quantum
evolution is a
Lorentz-invariant notion!

Dirac equation does yield
a causal evolution!

Evolution driven by
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Outlook

Consequence: localisation vs causal properties of wave packets

Hegerfeldt's theorem: Evolution driven by Ĥ ≥ 0 of a compactly

supported wave function breaks causality � in�nite tails appear
immediately.
Our formalism ⇒ Acausality is a property of the system and not of a
state.

Beyond the wave packet formalism: QFT, gauge theories, QG?

C∗-algebra of observables → causality in the space of states
(�noncommutative spacetimes�) [N. Franco, M. Eckstein 2013�2016]

[R. Penrose, Road to Reality, 2004]
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