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   points on manifold M                                   algebra of functions on M

Non-commutative Geometry: 
origin of quantum space-times

Planck scale
Classical Minkowski spacetime (=commutative algebra)

becomes “quantised” (deformed) 
to noncommutative spacetime (=non-commutative algebra)

ht
tp

://
vi

su
al

re
la

tiv
ity

.c
o

m

3/34



Noncommutative geometry - generalised notion of geometry

The noncommutative nature allows for obtaining quantum
gravitational corrections to the classical solutions.

Can be helpful in providing the phenomenological models
quantifying the effects of quantum gravity.

One of the mostly studied possible phenomenological effects
of quantum gravity is the modification in wave dispersion.
Such investigations were inspired by the observations of
gamma ray bursts (GRBs).
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Quantum symmetries

Deformed relativistic symmetries = Hopf algebras
quantum spacetimes = Hopf module algebras

Hopf algebra H(µ, η,∆, ε,S) is a structure composed by

1 a (unital associative) algebra (H, µ, η)

2 a (counital coassociative) coalgebra (H,∆, ε)

with S : H � H the antipode.

From any Lie algebra g one can make a Hopf algebra

H = (U(g),∆0, S0, ε)
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Lie algebra of vector fields as Hopf algebra

1 UΞ as Hopf algebra (UΞ,∆0, ε,S0), for ξ ∈ Ξ
(in the coordinate basis : ξ = ξµ ∂

∂xµ = ξµ∂µ):

[ξ, η] = (ξµ∂µη
ρ − ηµ∂µξρ)∂ρ,

∆0(ξ) = ξ ⊗ 1 + 1⊗ ξ,
ε(ξ) = 0, S(ξ) = −ξ.

2 The module algebra A 3 f , g is an underlying spacetime of
given symmetry:

ξ . (f · g) = (ξ(1) . f ) · (ξ(2) . g)

where ∆(ξ) = ξ(1) ⊗ ξ(2).

The algebra of functions on a manifold A = (C∞(M), ·)
constitutes a UΞ (Hopf)- module algebra with a natural action .
of the vector fields on functions.
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Twisting

(UΞ,A)
++

(UΞF ,AF )mm

The twist F is an invertible element of UΞ⊗ UΞ.

F = 1⊗ 1 +O(h),

which provides an undeformed case at the zero-th order in the
deformation parameter h.

Notation:
F = fα ⊗ fα, F−1 = f̄α ⊗ f̄α,

(sum over α = 1, 2, ...∞ assumed)
f̄α ∈ UΞ and fα ∈ UΞ
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The twist changes the symmetry to twisted symmetry (as
deformed Hopf algebra) UΞF

[ξ, η] = (ξµ∂µη
ρ − ηµ∂µξρ)∂ρ,

∆F (ξ) = F∆0(ξ)F−1

ε(ξ) = 0, SF (ξ) = fαS0(fα)S0(ξ)S0(̄fβ )̄fβ

the algebra ([·, ·]) remains undeformed;

the deformation depends on formal parameter h;

∆F leads to the deformed Leibniz rule for the symmetry
transformations when acting on product of fields:

ξ . (f ? g) = (ξ(1)F . f ) ? (ξ(2)F . g)

where ∆F (ξ) = ξ(1)F ⊗ ξ(2)F and AF = (A, ?).
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Star-product

A = (C∞(M), µ) =⇒ AF = (C∞(M), ?)

the algebra of smooth functions becomes a noncommutative
spacetime with the twisted ?-product

f ? g = µF−1(f ⊗ g) = f̄α(f )̄fα(g)

f , g ∈ C∞(M).

such ?-product is noncommutative and associative.

AF can be represented by deformed, ?-commutators of
noncommutative coordinates:

[x̂µ, x̂ν ] = [xµ, xν ]? = xµ ? xν − xµ ? xµ
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Quantum (non-commutative) space-times

                                                         can be deformed into, e.g. :

1.  Canonical (Moyal-Weyl) space-time:

with deformation parameter h of length² dimension.

                                                                       

2.  Lie-algebraic type space-time:

with deformation parameter h of mass dimension.

Special case – the so-called κ-Minkowski space-time: 

J.Lukierski, H. Ruegg, A. Nowicki, V.N. Tolstoy, Phys. Lett. B 264 (1991)
S. Majid, H. Ruegg Phys.Lett. B334 (1994) 

 S. Doplicher, K. Fredenhagen, J. E. Roberts,
Commun. Math. Phys. 172 (1995), [arXiv:hep-th/0303037].
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Twisted generators

P. Aschieri, A. Schenkel, Adv. Theor. Math. Phys.
18 3 (2014), arXiv:1210.0241

The action . of the Hopf algebra H on H-module V can be lifted
to the algebra of endomorphisms EndC(V ) via the adjoint action

ξ I M := ξ(1) . ◦M ◦ S
(
ξ(2)
)
.

for all ξ ∈ H and M ∈ EndC (V ).

twisted generators of Hopf algebra HF =
(
UΞF ,∆F , ε,SF

)
ξF =

(
f̄α I ξ

)
· f̄α

for ξ ∈ UΞ.

the twisted commutator[
ξF , χF

]
F = adFξFχ

F = ξF IF χ
F

ξ, χ ∈ UΞ.
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Symmetry
[based on work with P. Aschieri and A. Borowiec]

• Poincaré-Weyl-Lie algebra

[Mµν ,Mρλ] = i(ηµλMνρ − ηνλMµρ + ηνρMµλ − ηµρMνλ),

[Mµν ,Pρ] = i(ηνρPµ − ηµρPν) , [Pµ,Pλ] = 0,

[D,Pµ] = iPµ , [D,Mµν ] = 0.

The differential representation of the generators of Poincaré-Weyl

algebra is

Pµ = −i∂µ ; Mµν = −i (xµ∂ν − xν∂µ) ; D = −ixµ∂µ

Universal enveloping algebra of Poincaré-Weyl algebra - as Hopf algebra :

∆0(Mµν) = Mµν ⊗ 1 + 1⊗Mµν

∆0(Pµ) = Pµ ⊗ 1 + 1⊗ Pµ and ∆0(D) = D ⊗ 1 + 1⊗ D

with antipodes

S(Mµν) = −Mµν ; S(Pµ) = −Pµ; S(D) = −D

and counits
ε(Mµν) = ε(Pµ) = ε(D) = 0
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Jordanian twist

For the deformation we can use Jordanian twist

F = exp (−iD ⊗ σ) ; σ = ln

(
1 +

1

κ
P0

)

κ - deformation parameter (classical limit when κ �∞)

it provides

[x0, xk ]? =
i

κ
xk , [x i , xk ] = 0

κ-Minkowski spacetime

13/34

ktos
Oval



Jordanian twist

(with support in Poincaré-Weyl Hopf algebra)

Poincaré Casimir � = PµP
µ can be deformed through twist

(�F =
(
f̄α I �

)
f̄α) into:

�F =
PµP

µ(
1 + 1

κP0

)2 = �e−2σ

This type of invariant on momentum space leading to
deformed dispersion relation was already considered in DSR
framework.

[J. Magueijo and L. Smolin in Phys.Rev.Lett.88 (2002), hep-th/0112090;
and in Phys.Rev.D67 (2003), gr-qc/0207085.]
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Twisted generators

Twisted generators of Poincaré-Weyl algebra:

PFµ
(
f̄α I Pµ

)
f̄α = Pµ

1

1 + 1
κP0

= Pµe
−σ

MFµν = Mµν ; DF = D

Twisted Poincaré Casimir from PFµ

�F = PFµ PµF = PµP
µ 1(

1 + 1
κP0

)2
Twisted commutation relations[

�F ,PFµ
]

= 0 =
[
�F ,MFµν

][
�F ,DF

]
F = −2i�F
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Twisted observables

Twisted generators PF as the observables.

They are the generators of gF ∈ UFg which close the Lie

algebra gF under the twisted commutator [·, ·]F ;

PFµ - have the interpretations of the (deformed) translations

Additionally PFµ are Hermitean

16/34



Dispersion relation: Flat spacetime

Deformed wave equation: �Fφ = PFµ PµFφ

PFµ e ikµx
µ

= kFµ e ikµx
µ

where in four-vector notation : kµx
µ = ωt − ~k~x and

kF0 = ωF =
ω

1 + i
κω

and kFi =
ki

1 + i
κω(

ωF
)2 − (kF)2 = 0

The group velocity vg = dω
dk = c is as in the classical case due

to the fact that the plane waves are the ’eigenvectors’ of the
twisted observables.
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Twisted differential calculus - general framework

[S. Majid, R. Oeckl, Commun.Math.Phys. 205 (1999)
arXiv:math/9811054

P. Aschieri, M. Dimitrijevic, F. Meyer, J. Wess , Class.Quant.Grav. 23 (2006)
arXiv:hep-th/0510059 ]

The star-product between functions h ∈ C∞(M) and 1-forms
ω ∈ Ωr (M):

h ? ω = f̄α(h)̄fα(ω)

the action of f̄α - via the Lie derivative;

The ?-wedge product on two arbitrary forms ω and ω′ is

ω ∧? ω′ = f̄α(ω) ∧ f̄α(ω′)
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The exterior derivative d : A→ Ω satisfies:

d(f ? g) = df ? g + f ? dg ,

d2 = 0,

df = (∂µf )dxµ

The usual exterior derivative d commutes with the Lie
derivative which enters in the definition of the ?-product.
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Differential calculus deformed with Jordanian twist

For the twisted differential calculus we use the coordinate
basis where the basis 1-forms are denoted as dxµ.

The action of a vector fields in the twist is via Lie derivative:

LPµ(dxν) = 0, LD(dxµ) = −idxµ

Using these relations one can show that the basis 1-forms
anticommute:

dxµ ∧? dxν = dxµ ∧ dxν

Therefore we have:

dxµ ∧? dxν = dxµ ∧ dxν = −dxν ∧ dxµ = −dxν ∧? dxµ
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But the basis 1-forms do not ?-commute with functions:

f ? dxµ = f dxµ

dxµ ? f = dxµ(1 +
1

κ
P0)f

Therefore:

[f , dxµ]? =
i

κ
dxµ∂0f

- Generalization to higher order forms.
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Wave equation in curved commutative spacetime

The Laplace-Beltrami operator is a generalization to curved
spacetime of the D’Alembert operator and on a scalar field ϕ
we have (using local coordinates)

�LBϕ = ∗d ∗ dϕ =
1
√
g
∂ν [
√
ggνµ∂µϕ]

where classically, for (M, g) in n-dimensions, we have:

∗ω =

√
g

r ! (n − r)!
ωµ1....µr ε

µ1....µr
νr+1......νndx

νr+1 ∧ ... ∧ dxνn

where ω ∈ Ωr (M).
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Hodge star deformed

”quantum map” - can be also used to quantize maps
(morphisms):

m→ D (m) :=
(
f̄α I m

)
◦f̄α. = f̄α(1).◦m◦S

(
f̄α(2)

)
.◦f̄α. , m ∈ HomC (V1,V2)

where HomC (V1,V2) is the algebra of homomorphisms.

The deformation of the Hodge ∗ operation is explicitly
dependent on the twist form:

∗F = f̄α(1) . ◦ ∗ ◦S
(

f̄α(2)

)
. ◦f̄α.
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Hodge star deformed with Jordanian twist

From the form of the Jordanian twist and the fact that
LPν (dxµ) = 0 the non vanishing is only the zero-th order:

∗F (dxµ1 ∧ ... ∧ dxµs ) = ∗ (dxµ1 ∧ ... ∧ dxµs )

ω ∈ Ωs (M).

In particular for ϕ ∈ Ω0 (M) in n−dimensions:

∗F (ϕ) = ∗F (1 ? ϕ) = ∗F (1)?ϕ = ∗ (1)?ϕ = (dxµ1 ∧ ... ∧ dxµn)?ϕ
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Deformed Laplace-Beltrami

The deformed Casimir �F is compatible with Laplace-Beltrami
operator coming from this deformation of the Hodge star:

∗F (∂µϕ ? dxµ) = ∗F (dxµ) ?
1

1 + 1
κP0

∂µϕ

d ∗F dϕ = ∗ (dxµ) ? ∂ν

(
1

1 + 1
κP0

∂µϕ

)
dxν

Finally:

∗Fd ∗F dϕ = ηµν
1(

1 + 1
κP0

)2∂ν∂µϕ
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Curved spacetimes

The wave equation is now governed by the Laplace-Beltrami
operator:

�LBϕ =
1
√
g

(∂µ (
√
ggµρ) ∂ρϕ)

Laplace-Beltrami operator twisted with Jordanian twist:

Deformation of the Laplace-Beltrami operator

�FLBϕ = ∗Fd ∗F dϕ

The wave equation for the scalar field in terms of twisted
momenta:

�FLBϕ =
1
√
g
?

∂Fρ(
1 + i

κ∂
F
0

)1−n
(

(
√
ggµρ) ?

∂Fµ(
1 + i

κ∂
F
0

)n−1ϕ
)

= 0
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Solutions of wave eq. for FRWL metric

Friedman-Robertson-Walker-Lemaitre (FRWL) metric

(for simplicity in 2 dimensions)

g = −dt2 + a2 (t) dx2

where a (t) - scale factor

2-dim twisted wave equation

−∂F0 e−σ̃ (a) ? ∂F0 ϕ− e−2σ̃ (a) ? ∂F0 ∂
F
0 ϕ+ e−2σ̃

(
a−1
)
? ∂Fi ∂

F
i ϕ = 0

where e σ̃ =
(
1 + i

κ∂
F
0

)−1
.

In the classical limit it reduces to:
−ȧ∂0ϕ− a∂20ϕ+ 1

a∂
2
i ϕ = 0 where ȧ = ∂0a(t)
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−ȧ∂0ϕ− a∂20ϕ+ 1

a∂
2
i ϕ = 0 where ȧ = ∂0a(t)
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Classical equation

−a∂20ϕ− ȧ∂0ϕ+
1

a
∂2i ϕ = 0

separation of variables: ϕ = λ (t) e ikx

aλ̈+ λ̇ȧ + k2λ
1

a
= 0

it corresponds (in conformal time) to harmonic oscillator type
equation

(∂2η + k2)λ = 0
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Twisted wave equation

−∂F0 e−σ̃ (a) ? ∂F0 ϕ− e−2σ̃ (a) ? ∂F0 ∂
F
0 ϕ+ e−2σ̃

(
a−1
)
? ∂Fi ∂

F
i ϕ = 0

In the noncommutative case in 2 dimensions we assume the
solution of the form: ϕ = λ (t) ? e ikx = λ (t) e ikx

∂Fi e i
~k~x =

(
ikFi
)
e i
~k~x

(e i
~k~x are still the eigenvectors of the deformed operator ∂Fi

with eigenvalues: kFi )

using ∂Fµ = ∂µ
1

1− i
κ
∂0

= ∂µe
−σ

We simplify the equation as:

a ? ∂20λ+ ∂0 (a) ? eσ∂0λ+ a−1 ? k2λ = 0
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Finding the solution

As in the classical case - change the coordinates into
conformal time η, and ′ = ∂η

Introduce simplified notation s = ln a; s ′ = a′

a ; a′′

a = s ′′ + (s ′)2;

expand star-product in the first order of κ;

Look for the solution of the type:

λ = exp

(
iωη +

i

κ
F

)
= exp (iΩtott)

Classical part remains: (
ω2 − k2

)
λ = 0

And equation on F (η) is:

F ′′ + 2iωF ′ =

iωt (η)

a2

(
2
(
s ′
)3 − 2s ′s ′′ − s ′k2 + iω

(
s ′′ − 3

(
s ′
)2)− s ′ω2

)
− iω

a
s ′
(
s ′ − iω

)
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Scale factor

Solution of Einstein equation with perfect barotropic fluid leads to
the relation between the Hubble parameter and the scale factor of
FRWL metric and has the form: H2 = H2

0a
−3(1+w).

The scale factor, in some cases, has the form:

a (η) = [1 + H0 (η − η0)]δ

where δ = 2
1+3w is related with type of the Universe and can be,

e.g.:
w = −1 = δ dark energy (cosmological constant) -
w = 0 dust -
w = 1

3 radiation -
w = 1 stiff matter -
- dominated.
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Approximation for the scale factor

a (η) = 1 + δH0τ +
δ (δ − 1)

2
H2
0τ

2

where τ = η − η0;

Eq. on F (η) - linear terms in H0 :[
F ′′ + 2iωF ′

]
|H0 = −iωt (η) δH0

(
k2 + ω2

)
− ω2H0δ

we expand the correction function of the wave solution as:

F = F0 + H0F1 + H2
0F2

where due to initial conditions (flat case) we have F0 = 0.

ktos
Oval

ktos
Oval



The solution of this second order differential equation is the
following:

F1 = −δ
2

(
t0 +

1

2
τ

)(
k2 + ω2

)
τ

Hence:

vg =
dΩtot

dk
= Vg(cl) − 2ω

δH0

κ

(
t0
t

+
1

2

τ

t

)
τ

and τ is related with the redshift z .
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Conclusions

Twisted generators as observables?

Framework is valid not only for the flat spacetimes, but allows
for more general curved background as well.

Curved spacetime (FRWL) leading to correction to group
velocity of photons.

The group velocity depends linearly on the frequency ω up to
the first order of the deformation parameter κ .

Dependence on the type of the Universe - form of a(η) - for
cosmological constant case correction is subtracted from the
classical value.

Deformation of the wave equation valid for different types of
the twists and the metrics.

Thank you!
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