An extension of R-matrix approach to construction of integrable systems to $(3+1)$ dimensions

Artur Sergyeyev

Silesian University in Opava, Czech Republic
based on joint work with Maciej Błaszak

XXXVII Max Born Symposium
Wrocław 2016

Integrable systems

- nonlinear
- tractable:
* infinitely many explicit exact solutions
* rich symmetry algebras
* infinitely many conservation laws

Integrable systems usually arise as compatibility conditions for overdetermined linear systems (Lax pairs)

Dispersionless systems

A dispersionless (or hydrodynamic-type) system in d independent variables x^{1}, \ldots, x^{d} and N dependent variables u^{1}, \ldots, u^{N} is a first-order homogeneous quasilinear system

$$
\begin{equation*}
A_{1}(\boldsymbol{u}) \boldsymbol{u}_{x^{1}}+A_{1}(\boldsymbol{u}) \boldsymbol{u}_{x^{2}}+\cdots+A_{d}(\boldsymbol{u}) \boldsymbol{u}_{x^{d}}=0 \tag{1}
\end{equation*}
$$

where A_{i} are $M \times N$ matrices, $M \geqslant N, \boldsymbol{u} \equiv\left(u^{1}, \ldots, u^{N}\right)^{T}$.

Nearly all known today (classical bosonic) integrable systems with $d \geqslant 4$ are dispersionless, e.g. (anti-)-self-dual Yang-Mills equations and (anti-)-self-dual vacuum Einstein equations with vanishing cosmological constant.

Integrable systems: 3D vs 4D

Dispersive

Dispersionless

3D systematic construction (central extension)
systematic construction
(Hamiltonian vect. fields;

central extension)

exceptional

Integrable systems: 3D vs 4D

Dispersive

Dispersionless

3D systematic construction (central extension)
systematic construction
(Hamiltonian vect. fields;

central extension)

4D
exceptional

Integrable systems: 3D vs 4D

Dispersive

Dispersionless

3D systematic construction
(central extension)

4D exceptional
(Hamiltonian vect. fields; central extension)
systematic construction
systematic construction*
(contact geometry)
*See A. Sergyeyev, A new class of (3+1)-dimensional integrable systems related to contact geometry, arXiv:1401.2122

Constructing hierarchies: enter the R-matrix

Let \mathfrak{g} be an (infinite-dimensional) Lie algebra.
The Lie bracket $[\cdot, \cdot]$ defines the adjoint action of \mathfrak{g} on \mathfrak{g} :

$$
\operatorname{ad}_{a} b=[a, b] .
$$

An $R \in \operatorname{End}(\mathfrak{g})$ is a (classical) R-matrix if the R-bracket

$$
\begin{equation*}
[a, b]_{R}:=[R a, b]+[a, R b] \tag{2}
\end{equation*}
$$

is a new Lie bracket on \mathfrak{g}. The skew symmetry of (2) is obvious. As for the Jacobi identity for (2), a sufficient condition for it to hold is the classical modified Yang-Baxter equation for R,

$$
\begin{equation*}
[R a, R b]-R[a, b]_{R}-\alpha[a, b]=0, \quad \alpha \in \mathbb{R} \tag{3}
\end{equation*}
$$

A simple construction of commuting flows

Theorem 1

Suppose that R is an R-matrix on \mathfrak{g} which satisfies

$$
\begin{equation*}
(R L)_{t_{n}}=R L_{t_{n}}, \quad n \in \mathbb{N}, \tag{4}
\end{equation*}
$$

and obeys the classical modified Yang-Baxter equation (3) for $\alpha \neq 0$. Let $L_{i} \in \mathfrak{g}, i \in \mathbb{N}$ satisfy

$$
\begin{equation*}
\left(L_{n}\right)_{t_{r}}=\left[R L_{r}, L_{n}\right], \quad r, n \in \mathbb{N} \tag{5}
\end{equation*}
$$

Then the following conditions are equivalent:
i)
$\left(R L_{r}\right)_{t_{s}}-\left(R L_{s}\right)_{t_{r}}+\left[R L_{r}, R L_{s}\right]=0, \quad r, s \in \mathbb{N}$
ii)

$$
\begin{equation*}
\left[L_{i}, L_{j}\right]=0, \quad i, j \in \mathbb{N} \tag{6}
\end{equation*}
$$

Moreover, if i) or ii) holds then the flows (5) commute:

$$
\begin{equation*}
\left(\left(L_{n}\right)_{t_{r}}\right)_{t_{s}}-\left(\left(L_{n}\right)_{t_{s}}\right)_{t_{r}}=0, \quad n, r, s \in \mathbb{N} \tag{8}
\end{equation*}
$$

Proof of Theorem 1

Using (5) and the assumption (4) we see that the left-hand side of (6) takes the form

$$
\begin{aligned}
& \left(R L_{r}\right)_{t_{s}}-\left(R L_{s}\right)_{t_{r}}+\left[R L_{r}, R L_{s}\right] \\
& =R\left[R L_{s}, L_{r}\right]-R\left[R L_{r}, L_{s}\right]+\left[R L_{r}, R L_{s}\right] \\
& =\left[R L_{r}, R L_{s}\right]-R\left[L_{r}, L_{s}\right]_{R} \stackrel{(3)}{=}-\alpha\left[L_{r}, L_{s}\right]
\end{aligned}
$$

which establishes the equivalence of (7) and (6).
To complete the proof observe that the left-hand side of (7) can be written as
$\left(\left(L_{n}\right)_{t_{r}}\right)_{t_{s}}-\left(\left(L_{n}\right)_{t_{s}}\right)_{t_{r}}=\left[R L_{r}, L_{n}\right]_{t_{s}}-\left[R L_{s}, L_{n}\right]_{t_{r}}$
$=\left[\left(R L_{r}\right)_{t_{s}}-\left(R L_{s}\right)_{t_{r}}, L_{n}\right]+\left[R L_{r},\left[R L_{s}, L_{n}\right]\right]-\left[R L_{s},\left[R L_{r}, L_{n}\right]\right]$
$=\left[\left(R L_{r}\right)_{t_{s}}-\left(R L_{s}\right)_{t_{r}}+\left[R L_{r}, R L_{s}\right], L_{n}\right] \stackrel{(6)}{=} 0$.

Commutativity of extended flows

Assume that all elements of \mathfrak{g} depend on an additional independent variable y not involved in the Lie bracket.

Theorem 2

Suppose that $\mathcal{L} \in \mathfrak{g}$ and $L_{i} \in \mathfrak{g}, i \in \mathbb{N}$ are such that the zero-curvature equations (6) hold for all $r, s \in \mathbb{N}$, the R-matrix R on \mathfrak{g} satisfies

$$
\begin{equation*}
(R L)_{t_{n}}=R L_{t_{n}}, \quad n \in \mathbb{N}, \quad(R L)_{y}=R L_{y} \tag{9}
\end{equation*}
$$

and L_{r} satisfy the extended Lax equations

$$
\begin{equation*}
\mathcal{L}_{t_{r}}=\left[R L_{r}, \mathcal{L}\right]+\left(R L_{r}\right)_{y}, \quad r \in \mathbb{N} \tag{10}
\end{equation*}
$$

Then the flows (10) commute, i.e.,

$$
\begin{equation*}
\left(\mathcal{L}_{t_{r}}\right)_{t_{s}}-\left(\mathcal{L}_{t_{s}}\right)_{t_{r}}=0, \quad r, s \in \mathbb{N} \tag{11}
\end{equation*}
$$

Proof of Theorem 2

Using equations (10) and the Jacobi identity for the Lie bracket we obtain

$$
\begin{aligned}
\left(\mathcal{L}_{t_{r}}\right)_{t_{s}}-\left(\mathcal{L}_{t_{s}}\right)_{t_{r}}= & {\left[\left(R L_{r}\right)_{t_{s}}-\left(R L_{s}\right)_{t_{r}}+\left[R L_{r}, R L_{s}\right], \mathcal{L}\right] } \\
& +\left(\left(R L_{r}\right)_{t_{s}}-\left(R L_{s}\right)_{t_{r}}+\left[R L_{r}, R L_{s}\right]\right)_{y} \\
= & 0
\end{aligned}
$$

The right-hand side of the above equation vanishes by virtue of the zero curvature equations (6).

R-matrices from the Lie algebra decomposition

If \mathfrak{g} admits a decomposition into two Lie subalgebras \mathfrak{g}_{+} and \mathfrak{g}_{-}such that

$$
\mathfrak{g}=\mathfrak{g}_{+} \oplus \mathfrak{g}_{-}, \quad\left[\mathfrak{g}_{ \pm}, \mathfrak{g}_{ \pm}\right] \subset \mathfrak{g}_{ \pm}, \quad \mathfrak{g}_{+} \cap \mathfrak{g}_{-}=\emptyset
$$

the operator

$$
\begin{equation*}
R=\frac{1}{2}\left(P_{+}-P_{-}\right)=P_{+}-\frac{1}{2} \tag{12}
\end{equation*}
$$

where $P_{ \pm}$are projectors onto $\mathfrak{g}_{ \pm}$, satisfies the classical modified Yang-Baxter equation (3) with $\alpha=\frac{1}{4}$, i.e., R defined by (12) is a classical R-matrix.

Lax-Novikov equations and the hierarchy

Next, let us specify the dependence of L_{j} on y via the so-called Lax-Novikov equations

$$
\begin{equation*}
\left[L_{j}, \mathcal{L}\right]+\left(L_{j}\right)_{y}=0, \quad j \in \mathbb{N} \tag{13}
\end{equation*}
$$

Then, upon applying (7), (12) and (13), equations (5), and (10) are readily seen to take the following form:

$$
\begin{gather*}
\left(L_{s}\right)_{t_{r}}=\left[B_{r}, L_{s}\right], \quad r, s \in \mathbb{N}, \tag{14}\\
\left(B_{r}\right)_{t_{s}}-\left(B_{s}\right)_{t_{r}}+\left[B_{r}, B_{s}\right]=0, \tag{15}\\
\mathcal{L}_{t_{r}}=\left[B_{r}, \mathcal{L}\right]+\left(B_{r}\right)_{y}, \quad n, r \in \mathbb{N} \tag{16}
\end{gather*}
$$

where $B_{i}=P_{+} L_{i}$.

Reduction with respect to y

If upon the reduction to the y-independent case we put $\mathcal{L}=L_{n}$ for some $n \in \mathbb{N}$, then the hierarchies (10), i.e.,

$$
\mathcal{L}_{t_{r}}=\left[R L_{r}, \mathcal{L}\right]+\left(R L_{r}\right)_{y}, \quad r \in \mathbb{N},
$$

boil down to hierarchies (5) and the Lax-Novikov equations (13), i.e.,

$$
\left[L_{j}, \mathcal{L}\right]+\left(L_{j}\right)_{y}=0, \quad j \in \mathbb{N}
$$

reduce to (a part of) the commutativity conditions (7), i.e., $\left[L_{n}, L_{j}\right]=0$. In particular, if the bracket $[\cdot, \cdot]$ is such that equations (10) give rise to integrable systems in d independent variables, then equations (5) yield integrable systems in $d-1$ independent variables.

Commutative subalgebras: a standard construction

A standard construction of a commutative subalgebra spanned by L_{i} whose existence by Theorem 1 ensures commutativity of the flows (10) is, in the case of Lie algebras which admit an additional associative multiplication o which obeys the Leibniz rule

$$
\begin{equation*}
\operatorname{ad}_{a}(b \circ c)=\operatorname{ad}_{a}(b) \circ c+b \circ \operatorname{ad}_{a}(c), \tag{17}
\end{equation*}
$$

as follows: the commutative subalgebra in question is generated by fractional powers of a given element $L \in \mathfrak{g}$.

Further remarks

In our setting, when we no longer assume existence of an associative multiplication on \mathfrak{g} which obeys the Leibniz rule (17), the above construction does not work anymore. To circumvent this difficulty, instead of an explicit construction of commuting L_{i} we will impose the zero-curvature constraints (6), i.e.,

$$
\left(R L_{r}\right)_{t_{s}}-\left(R L_{s}\right)_{t_{r}}+\left[R L_{r}, R L_{s}\right]=0, \quad r, s \in \mathbb{N}
$$

on chosen elements $L_{i} \in \mathfrak{g}, i \in \mathbb{N}$; in our setting ($[\cdot, \cdot]$ is the contact bracket, see below), this can be done in a consistent fashion. By Theorem 1 this guarantees the commutativity of L_{i} for any R-matrix which obeys the classical modified Yang-Baxter equation (3) with $\alpha \neq 0$.

The contact bracket setting

Consider a commutative and associative algebra A of formal series in p of the form $f=\sum_{i} u_{i} p^{i}$ with the standard multiplication

$$
\begin{equation*}
f_{1} \cdot f_{2} \equiv f_{1} f_{2}, \quad f_{1}, f_{2} \in A \tag{18}
\end{equation*}
$$

The coefficients u_{i} of these series are assumed to be smooth functions of x, y, z and infinitely many times t_{1}, t_{2}, \ldots The contact bracket on A (see AS, arxiv:1401.2122):

$$
\begin{equation*}
\left\{f_{1}, f_{2}\right\}=\frac{\partial f_{1}}{\partial p} \frac{\partial f_{2}}{\partial x}-p \frac{\partial f_{1}}{\partial p} \frac{\partial f_{2}}{\partial z}+f_{1} \frac{\partial f_{2}}{\partial z}-\left(f_{1} \leftrightarrow f_{2}\right) \tag{19}
\end{equation*}
$$

The variable y is not involved in the bracket.

The contact bracket setting II

Note that A is not a Poisson algebra as the contact bracket (19) does not obey the Leibniz rule. However, it belongs to a more general class of the so-called Jacobi algebras that obey the following generalization of the Leibniz rule:

$$
\begin{equation*}
\left\{f_{1} f_{2}, f_{3}\right\}=\left\{f_{1}, f_{3}\right\} f_{2}+f_{1}\left\{f_{2}, f_{3}\right\}-f_{1} f_{2}\left\{1, f_{3}\right\} . \tag{20}
\end{equation*}
$$

If the unity 1 belongs to the center of the Lie algebra in question, then (20) boils down to the usual Leibniz rule and the algebra under study is then just a Poisson algebra.

The contact bracket setting III

To relate to the R-matrix approach, we identify \mathfrak{g} with A and the bracket $[\cdot, \cdot]$ in \mathfrak{g} with the contact bracket (19). As for the choice of the splitting of \mathfrak{g} into Lie subalgebras $\mathfrak{g}_{ \pm}$ with $P_{ \pm}$being projections onto the respective subalgebras, we have two natural choices when the R 's defined by (12) satisfy the classical modified Yang-Baxter equation (3) and thus are R-matrices. These two choices are

$$
P_{+}=P_{\geqslant k},
$$

where $k=0$ or $k=1$, and by definition

$$
P_{\geqslant k}\left(\sum_{j=-\infty}^{\infty} a_{j} p^{j}\right)=\sum_{j=k}^{\infty} a_{j} p^{j}
$$

General setup for the R-matrix approach

Thus, in our approach we have \mathcal{L} of a general form

$$
\begin{align*}
\mathcal{L} & =\sum_{i=-\infty}^{n} u_{i} p^{i}, \quad n>0 \tag{21}\\
B_{m} & :=\sum_{j=k}^{m} v_{m, j} p^{j}, \quad m \in \mathbb{N} . \tag{22}
\end{align*}
$$

\mathcal{L} and B_{m} are required to obey the following equations:

$$
\begin{gather*}
\mathcal{L}_{t_{m}}=\left\{B_{m}, \mathcal{L}\right\}+\left(B_{m}\right)_{y}, \quad m \in \mathbb{N} \tag{23}\\
\left(B_{n}\right)_{t_{m}}-\left(B_{m}\right)_{t_{n}}-\left\{B_{m}, B_{n}\right\}=0, \quad m, n \in \mathbb{N} \tag{24}
\end{gather*}
$$

Eqs.(23) define the time evolution (24) relate $v_{m, j}$ and $v_{n, i}$. Below we will subject \mathcal{L} to various constraints.

Linear Lax pairs

AS, arXiv:1401.2122: a zero-curvature equation

$$
f_{y}-g_{\tau}-\{f, g\}=0
$$

holds if and only if the following linear system is compatible:

$$
\psi_{\tau}=X_{f}(\psi), \quad \psi_{y}=X_{g}(\psi)
$$

where $\psi=\psi(x, y, z, \tau, p)$ and

$$
X_{h}=h_{p} \partial_{x}+\left(p h_{z}-h_{x}\right) \partial_{p}+\left(h-p h_{p}\right) \partial_{z}
$$

is a contact vector field with the contact Hamiltonian h (so by definition there exists a function $f: L_{X_{h}} \alpha=f \alpha$, where $\alpha=d z+p d x$ is our contact form, and $\left.i_{x_{h}} \alpha=h\right)$.
$\operatorname{ker} \alpha$ for $\alpha=d z+p d x$ (original image credit: John Etnyre, arXiv:math/0111118)

$$
z
$$

(3+1)D integrable hierarchies I

Let $k=0$ so $R=\frac{1}{2}\left(P_{\geq 0}-P_{<0}\right)$. For $n>0$ and $m>0$ put

$$
\begin{equation*}
\mathcal{L}:=u_{n} p^{n}+u_{n-1} p^{n-1}+\cdots+u_{0}+u_{-1} p^{-1}+\cdots, \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
B_{m}:=v_{m, m} p^{m}+v_{m, m-1} p^{m-1}+\cdots+v_{m, 0}, \tag{26}
\end{equation*}
$$

where

$$
\begin{aligned}
u_{i} & =u_{i}(\vec{t}, x, y, z), \\
v_{m, j} & =v_{m, j}(\vec{t}, x, y, z)
\end{aligned}
$$

and $\vec{t}=\left(t_{1}, t_{2}, \ldots\right)$.

(3+1)D integrable hierarchies II

Substituting \mathcal{L} and B_{m} into the zero-curvature equations

$$
\begin{equation*}
\mathcal{L}_{t_{m}}=\left\{B_{m}, \mathcal{L}\right\}+\left(B_{m}\right)_{y} \tag{27}
\end{equation*}
$$

yields a hierarchy of infinite-component systems $(m \in \mathbb{N})$
$\left(u_{r}\right)_{t_{m}}=X_{r}^{m}\left[u, v_{m}\right], \quad r \leq n+m, \quad r \neq 0, \ldots, m$,
$\left(u_{r}\right)_{t_{m}}=X_{r}^{m}\left[u, v_{m}\right]+\left(v_{m, r}\right)_{y}, \quad r=0, \ldots, m$.
where $u_{r} \equiv 0$ for $r>n$; for $r \leq m+n$ we put

$$
\begin{aligned}
X_{r}^{m}\left[u, v_{m}\right]= & \sum_{s=0}^{m}\left[s v_{m, s}\left(u_{r-s+1}\right)_{x}-(r-s+1) u_{r-s+1}\left(v_{m, s}\right)_{X}\right. \\
& \left.-(s-1) v_{m, s}\left(u_{r-s}\right)_{z}+(r-s-1) u_{r-s}\left(v_{m, s}\right)_{z}\right]
\end{aligned}
$$

$$
u=\left(u_{n}, u_{n-1}, \ldots\right) \text { and } v_{m}=\left(v_{m, 0}, \ldots, v_{m, m}\right)
$$

Constraints I

The first equation from the system (28), i.e., the one for $r=n+m$, takes the form

$$
(n-1) u_{n}\left(v_{m, m}\right)_{z}-(m-1) v_{m, m}\left(u_{n}\right)_{z}=0
$$

and hence, for $n>1, m>1$, admits the constraint

$$
\begin{equation*}
v_{m, m}=\left(u_{n}\right)^{\frac{m-1}{n-1}} \tag{29}
\end{equation*}
$$

For $n=1$ the constraint in question takes the form $u_{1}=$ const.

Constraints II

Let $u_{n}=c_{n}, \quad v_{m, m}=c_{m, m}$, where $c_{n}, c_{m, m} \in \mathbb{R}$.
Then, if $c_{n}=c_{m, m}=1$, we have, for $n>0$ and $m>0$

$$
\begin{align*}
& \mathcal{L}=p^{n}+u_{n-1} p^{n-1}+\cdots+u_{0}+u_{-1} p^{-1}+\cdots \\
& B_{m} \equiv P_{+} L_{m}=p^{m}+v_{m, m-1} p^{m-1}+\cdots+v_{m, 0} \tag{31}
\end{align*}
$$

and equations (27) take the form (28), where now $r<n+m$ and
$X_{r}^{m}\left[u, v_{m}\right]=m\left(u_{r-m+1}\right)_{x}-(m-1)\left(u_{r-m}\right)_{z}$

$$
\begin{aligned}
+ & \sum_{s=0}^{m-1}\left[s v_{m, s}\left(u_{r-s+1}\right)_{x}-(r-s+1) u_{r-s+1}\left(v_{m, s}\right)_{x}\right. \\
& \left.-(s-1) v_{m, s}\left(u_{r-s}\right)_{z}+(r-s-1) u_{r-s}\left(v_{m, s}\right)_{z}\right]
\end{aligned}
$$

Constraints III

Again, the first equation from the system (28), i.e., the one for $r=n+m-1$, takes the form

$$
(n-1)\left(v_{m, m-1}\right)_{z}-(m-1)\left(u_{n-1}\right)_{z}=0
$$

so the system under study for $n>1$ admits a further constraint

$$
\begin{equation*}
v_{m, m-1}=\frac{(m-1)}{(n-1)} u_{n-1} . \tag{32}
\end{equation*}
$$

It is readily seen that for $n=1$ the constraint (32) should be replaced by $u_{0}=$ const.

First-order Lax operator

Upon taking $u_{0}=0$, the Lax equation (27) for

$$
\begin{equation*}
\mathcal{L}=p+u_{-1} p^{-1}+u_{-2} p^{-2}+\cdots, \tag{33}
\end{equation*}
$$

and for $m=2$, with $B_{2}=p^{2}+v_{1} p+v_{0}$ generates the following infinite-component system

$$
\begin{align*}
\left(v_{1}\right)_{y}= & \left(v_{1}\right)_{x}+\left(u_{-1}\right)_{z}, \\
\left(v_{0}\right)_{y}= & \left(v_{0}\right)_{x}+\left(u_{-2}\right)_{z}-2\left(u_{-1}\right)_{x}+2 u_{-1}\left(v_{1}\right)_{z}, \\
\left(u_{r}\right)_{t_{2}}= & 2\left(u_{r-1}\right)_{x}-\left(u_{r-2}\right)_{z}-(r+1) u_{r+1}\left(v_{0}\right)_{x} \tag{34}\\
& +v_{0}\left(u_{r}\right)_{z}+(r-1) u_{r}\left(v_{0}\right)_{z}+v_{1}\left(u_{r}\right)_{x} \\
& -r u_{r}\left(v_{1}\right)_{x}+(r-2) u_{r-1}\left(v_{1}\right)_{z},
\end{align*}
$$

where $r<0$ and $v_{2, r} \equiv v_{r}$.

General case for $k=1$

Let $k=1$, when $P_{+}=P_{\geqslant 1}, m>0, n>0$,
$\mathcal{L}=u_{n} p^{n}+u_{n-1} p^{n-1}+\cdots+u_{0}+u_{-1} p^{-1}+\ldots$,
$B_{m}=v_{m, m} p^{m}+v_{m, m-1} p^{m-1}+\cdots+v_{m, 1} p$,
(35)
$\left(u_{r}\right)_{t_{m}}=X_{r}^{m}\left[u, v_{m}\right], r \leq n+m, r \neq 1, \ldots, m$,
$\left(u_{r}\right)_{t_{m}}=X_{r}^{m}\left[u, v_{m}\right]+\left(v_{m, r}\right)_{y}, r=1, \ldots, m$,
(36)
where $u_{r} \equiv 0$ for $r>n, u=\left(u_{n}, u_{n-1}, \ldots\right)$,

$$
v_{m}=\left(v_{m, 1}, \ldots, v_{m, m}\right), \text { and for } r \leq m+n
$$

$$
\begin{aligned}
X_{r}^{m}\left[u, v_{m}\right] & =\sum_{s=1}^{m}\left[s v_{m, s}\left(u_{r-s+1}\right)_{x}-(r-s+1) u_{r-s+1}\left(v_{m, s}\right)_{x}\right. \\
- & \left.(s-1) v_{m, s}\left(u_{r-s}\right)_{z}+(r-s-1) u_{r-s}\left(v_{m, s}\right)_{z}\right]
\end{aligned}
$$

For $n>1, m>1$ we again obtain the constraint (29), ie., $v_{m, m}=\left(u_{n}\right)^{\frac{m-1}{n-1}}$, and for $n=1$ it is replaced by $u_{1}=$ const.

$k=1$: the simplest special case

Let $m>1$. Put

$$
\begin{equation*}
\mathcal{L}=p+u_{0}+u_{-1} p^{-1}+\cdots, \tag{37}
\end{equation*}
$$

$$
B_{m} \equiv P_{+} L_{m}=v_{m, m-1} p^{m}+v_{m, m-2} p^{m-1}+\cdots+v_{m, 1} p
$$

The first flow for $m=2$, where $v_{2, r} \equiv v_{r}$, is

$$
\begin{aligned}
\left(v_{2}\right)_{y}= & \left(v_{2}\right)_{x}+u_{0}\left(v_{2}\right)_{z}+v_{2}\left(u_{0}\right)_{z}, \\
\left(v_{1}\right)_{y}= & \left(v_{1}\right)_{x}+u_{0}\left(v_{1}\right)_{z}+v_{2}\left(u_{-1}\right)_{z} \\
& +2 u_{-1}\left(v_{2}\right)_{z}-2 v_{2}\left(u_{0}\right)_{x}, \\
\left(u_{r}\right)_{t_{2}}= & v_{1}\left(u_{r}\right)_{x}-r u_{r}\left(v_{1}\right)_{x}+(r-2) u_{r-1}\left(v_{1}\right)_{z} \\
& +2 v_{2}\left(u_{r-1}\right)_{x}-(r-1) u_{r-1}\left(v_{2}\right)_{x} \\
& -v_{2}\left(u_{r-2}\right)_{z}+(r-3) u_{r-2}\left(v_{2}\right)_{z} .
\end{aligned}
$$

Finite-component reductions for $k=0$

We have natural reductions to finite-component systems by putting $u_{r}=0$ for $r<1$ or $r<0$ in (25) and (30), i.e.,

$$
\begin{align*}
\mathcal{L} & =u_{n} p^{n}+u_{n-1} p^{n-1}+\cdots+u_{r} p^{r}, \quad r=0,1 \\
B_{m} & =\left(u_{n}\right)^{\frac{m-1}{n-1}} p^{m}+v_{m, m-1} p^{m-1}+\cdots+v_{m, 0} \tag{40}\\
\mathcal{L} & =p^{n}+u_{n-1} p^{n-1}+\cdots+u_{r} p^{r}, \quad r=0,1 \\
B_{m} & =p^{m}+\frac{(m-1)}{(n-1)} u_{n-1} p^{m-1}+\cdots+v_{m, 0} \tag{41}
\end{align*}
$$

The case (41) for $r=0$ was considered for the first time in AS, arXiv:1401.2122. In (40) and (41) for $r=0 \mathcal{L}$ has the same form as B_{n}, so y can be identified with t_{n}.

Finite-component reductions for $k=1$

We now have two cases:

$$
\begin{align*}
\mathcal{L} & =u_{n} p^{n}+u_{n-1} p^{n-1}+\cdots+u_{r} p^{r}, \\
B_{m} & =\left(u_{n}\right)^{\frac{m-1}{n-1}} p^{m}+v_{m, m-1} p^{m-1}+\cdots+v_{m, 1} p ; \tag{42}\\
\mathcal{L} & =p+u_{0}+u_{-1} p^{-1}+\cdots+u_{r} p^{r}, \\
B_{m} & =v_{m, m} p^{m}+v_{m, m-1} p^{m-1}+\cdots+v_{m, 1} p . \tag{43}
\end{align*}
$$

Here $m>1$ and $r=0,1,-1, \ldots$.

Finite-component reductions for $k=1$: an example

$$
\begin{equation*}
\mathcal{L}:=p+u_{0}+u_{-1} p^{-1} \tag{44}
\end{equation*}
$$

and, with a slight variation of the earlier notation, put

$$
B_{2}=v_{2} p^{2}+v_{1} p, \quad B_{3}=w_{3} p^{3}+w_{2} p^{2}+w_{1} p
$$

The member of the hierarchy associated with B_{2} reads

$$
\begin{align*}
\left(u_{-1}\right)_{t_{2}}= & u_{-1}\left(v_{1}\right)_{x}+v_{1}\left(u_{-1}\right)_{x} \\
\left(u_{0}\right)_{t_{2}}= & -2 u_{-1}\left(v_{1}\right)_{z}+v_{1}\left(u_{0}\right)_{x} \\
& +u_{-1}\left(v_{2}\right)_{x}+2 v_{2}\left(u_{-1}\right)_{x} \tag{45}\\
\left(v_{1}\right)_{y}= & \left(v_{1}\right)_{x}+2 u_{-1}\left(v_{2}\right)_{z} \\
& +v_{2}\left(u_{-1}\right)_{z}+u_{0}\left(v_{1}\right)_{z}-2 v_{2}\left(u_{0}\right)_{x} \\
\left(v_{2}\right)_{y}= & \left(v_{2}\right)_{x}+u_{0}\left(v_{2}\right)_{z}+v_{2}\left(u_{0}\right)_{z}
\end{align*}
$$

Finite-component reductions for $k=1$: an example II

In turn, the flow associated with B_{3} has the form

$$
\begin{aligned}
\left(u_{-1}\right)_{t_{3}}= & u_{-1}\left(w_{1}\right)_{x}+w_{1}\left(u_{-1}\right)_{x} \\
\left(u_{0}\right)_{t_{3}}= & w_{1}\left(u_{0}\right)_{x}-2 u_{-1}\left(w_{1}\right)_{z}+u_{-1}\left(w_{2}\right)_{x}+2 w_{2}\left(u_{-1}\right)_{x} \\
\left(w_{1}\right)_{y}= & \left(w_{1}\right)_{x}+w_{2}\left(u_{-1}\right)_{z}-u_{-1}\left(w_{3}\right)_{x} \\
& -2 w_{2}\left(u_{0}\right)_{x}+2 u_{-1}\left(w_{2}\right)_{z} \\
& +u_{0}\left(w_{1}\right)_{z}-3 w_{3}\left(u_{-1}\right)_{x} \\
\left(w_{2}\right)_{y}= & \left(w_{2}\right)_{x}-3 w_{3}\left(u_{0}\right)_{x}+2 w_{3}\left(u_{-1}\right)_{z}+w_{2}\left(u_{0}\right)_{z} \\
& +u_{0}\left(w_{2}\right)_{z}+2 u_{-1}\left(w_{3}\right)_{z} \\
\left(w_{3}\right)_{y}= & \left(w_{3}\right)_{x}+u_{0}\left(w_{3}\right)_{z}+2 w_{3}\left(u_{0}\right)_{z}
\end{aligned}
$$

Finite-component reductions for $k=1$: an example III

Commutativity of the flows associated with t_{2} and t_{3}, i.e.,

$$
\left(\left(u_{i}\right)_{t_{2}}\right)_{t_{3}}=\left(\left(u_{i}\right)_{t_{3}}\right)_{t_{2}}, \quad i=0,1
$$

can be readily checked using the zero-curvature equation

$$
\begin{equation*}
\left(B_{2}\right)_{t_{3}}-\left(B_{3}\right)_{t_{2}}+\left\{B_{2}, B_{3}\right\}=0 \tag{46}
\end{equation*}
$$

The compatibility conditions

$$
\left(\left(v_{i}\right)_{y}\right)_{z}=\left(\left(v_{i}\right)_{z}\right)_{y}, \quad i=1,2
$$

are also satisfied by virtue of (45) and (46).

Finite-component reductions for $k=1$: an example IV

Eq.(46) is equivalent to the system

$$
\begin{aligned}
\left(v_{1}\right)_{z}= & -\frac{v_{2}}{w_{3}}\left(w_{3}\right)_{x}-\frac{v_{2} w_{2}}{4 w_{3}^{2}}\left(w_{3}\right)_{z}+\frac{v_{2}}{2 w_{3}}\left(w_{2}\right)_{z}+\frac{3}{2}\left(v_{2}\right)_{x} \\
\left(v_{2}\right)_{z}= & \frac{v_{2}}{2 w_{3}}\left(w_{3}\right)_{z} \\
\left(w_{1}\right)_{t_{2}}= & v_{1}\left(w_{1}\right)_{x}-w_{1}\left(v_{1}\right)_{x}+\left(v_{1}\right)_{t_{3}}, \\
\left(w_{2}\right)_{t_{2}}= & v_{1}\left(w_{2}\right)_{x}-w_{1}\left(v_{2}\right)_{x}+2 v_{2}\left(w_{1}\right)_{x}-2 w_{2}\left(v_{1}\right)_{x}+\left(v_{2}\right)_{t_{3}} \\
\left(w_{3}\right)_{t_{2}}= & \frac{v_{2} w_{2}}{2 w_{3}}\left(w_{2}\right)_{z}-\frac{w_{2}}{2}\left(v_{2}\right)_{x}-\frac{v_{2} w_{2}^{2}}{4 w_{3}^{2}}\left(w_{3}\right)_{z} \\
& +\frac{\left(v_{1} w_{3}-v_{2} w_{2}\right)}{w_{3}}\left(w_{3}\right)_{x} \\
& -v_{2}\left(w_{1}\right)_{z}+2 v_{2}\left(w_{2}\right)_{x}-3 w_{3}\left(v_{1}\right)_{x} .
\end{aligned}
$$

Finite-component reductions for $k=1$: another example

The simplest nontrivial example of Lax pair (42) is given by

$$
\begin{aligned}
\mathcal{L} & =u_{3} p^{3}+u_{2} p^{2}+u_{1} p \\
B_{2} & =v_{2} p^{2}+v_{1} p
\end{aligned}
$$

and the associated system reads

$$
\begin{align*}
0= & 2 u_{3}\left(v_{2}\right)_{z}-v_{2}\left(u_{3}\right)_{z}, \\
0= & u_{2}\left(v_{2}\right)_{z}-v_{2}\left(u_{2}\right)_{z}+2 u_{3}\left(v_{1}\right)_{z} \\
& +2 v_{2}\left(u_{3}\right)_{x}-3 u_{3}\left(v_{2}\right)_{x} \\
\left(u_{3}\right)_{t_{2}}= & v_{1}\left(u_{3}\right)_{x}+2 v_{2}\left(u_{2}\right)_{x}-2 u_{2}\left(v_{2}\right)_{x} \tag{47}\\
& -3 u_{3}\left(v_{1}\right)_{x}-v_{2}\left(u_{1}\right)_{z}+u_{2}\left(v_{1}\right)_{z}, \\
\left(u_{2}\right)_{t_{2}}= & \left(v_{2}\right)_{y}+v_{1}\left(u_{2}\right)_{x}+2 v_{2}\left(u_{1}\right)_{x} \\
& -2 u_{2}\left(v_{1}\right)_{x}-u_{1}\left(v_{2}\right)_{x}, \\
\left(u_{1}\right)_{t_{2}}= & \left(v_{1}\right)_{y}+v_{1}\left(u_{1}\right)_{x}-u_{1}\left(v_{1}\right)_{x} .
\end{align*}
$$

Finite-component reductions for $k=1$: another example II

The first two of the above equations impose constraints on the 'non-dynamical' fields v_{1} and v_{2}. The first of these constraints is satisfied once we impose (29), i.e.,

$$
v_{2}=\left(u_{3}\right)^{\frac{1}{2}}
$$

and then the second one boils down to

$$
\left(v_{1}\right)_{z}=\left[\frac{1}{2} u_{2}\left(u_{3}\right)^{-\frac{1}{2}}\right]_{z}-\left[\frac{1}{2}\left(u_{3}\right)^{\frac{1}{2}}\right]_{x},
$$

or

$$
v_{1}=\frac{1}{2} u_{2}\left(u_{3}\right)^{-\frac{1}{2}}-\partial_{z}^{-1} \partial_{x}\left[\frac{1}{2}\left(u_{3}\right)^{\frac{1}{2}}\right] .
$$

Conclusions and outlook

- New integrable hierarchies of 4D dispersionless systems were constructed using a suitable modification of the R-matrix approach for the Lie algebra of functions w.r.t. the contact bracket
- Open problem: Is it possible to generalize our construction to the case of noncommutative independent and/or dependent variables?

Conclusions and outlook

- New integrable hierarchies of 4D dispersionless systems were constructed using a suitable modification of the R-matrix approach for the Lie algebra of functions w.r.t. the contact bracket
- Open problem: Is it possible to generalize our construction to the case of noncommutative independent and/or dependent variables?

For details please see arXiv:1401.2122, arXiv:1605.07592

Conclusions and outlook

- New integrable hierarchies of 4D dispersionless systems were constructed using a suitable modification of the R-matrix approach for the Lie algebra of functions w.r.t. the contact bracket
- Open problem: Is it possible to generalize our construction to the case of noncommutative independent and/or dependent variables?

> For details please see arXiv:1401.2122, arXiv:1605.07592
> Dziękuję za uwagẹ

