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Integrable systems

e nonlinear

e tractable:

« infinitely many explicit exact solutions
* rich symmetry algebras
* infinitely many conservation laws

Integrable systems usually arise as compatibility conditions
for overdetermined linear systems (Lax pairs)
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Dispersionless systems

A dispersionless (or hydrodynamic-type) system in d
independent variables x!, ..., x% and N dependent variables

ut, ..., u" is a first-order homogeneous quasilinear system

Al(u)uxl +A1(u)uxz—|—---—|—Ad(u)uXd =0, (1)
where A; are M x N matrices, M > N, u = (ul, o uN)T.
Nearly all known today (classical bosonic) integrable
systems with d > 4 are dispersionless, e.g. (anti-)-self-dual

Yang—Mills equations and (anti-)-self-dual vacuum Einstein
equations with vanishing cosmological constant.
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Integrable systems: 3D vs 4D

Dispersive Dispersionless
3D systematic construction systematic construction
(central extension) (Hamiltonian vect. fields;

central extension)

4D exceptional exceptional
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Integrable systems: 3D vs 4D

Dispersive Dispersionless
3D systematic construction systematic construction
(central extension) (Hamiltonian vect. fields;

central extension)

4D exceptional systematic construction”

(contact geometry)

*See A. Sergyeyev, A new class of (3+1)-dimensional integrable systems related
to contact geometry, arXiv:1401.2122
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Constructing hierarchies: enter the R-matrix

Let g be an (infinite-dimensional) Lie algebra.
The Lie bracket [-, -] defines the adjoint action of g on g:

ad, b = [a, b).
An R € End(g) is a (classical) R-matrix if the R-bracket
[3, b]R = [Ra7 b] + [au Rb] (2)

is a new Lie bracket on g. The skew symmetry of (2) is
obvious. As for the Jacobi identity for (2), a sufficient
condition for it to hold is the classical modified
Yang—Baxter equation for R,

[Ra, Rb] — R[a, b]g — «[a, b] = 0, aeR.  (3)
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A simple construction of commuting flows

Theorem 1
Suppose that R is an R-matrix on g which satisfies

(RL),, = RL,, né€N, (4)
and obeys the classical modified Yang—Baxter equation (3)
fora # 0. Let L; € g, i € N satisfy

(L,):, = [RL,, L], r,n & N, (5)
Then the following conditions are equivalent:
i) (RL,):, — (RLs);, + [RL,,RL] =0, r,seN (6)

i) [Li, L;] =0, i,jeN. (7)
Moreover, if i) or ii) holds then the flows (5) commute:
((Ln)e)e = ((Ln)e)e, =0, nyr,seN. (8)
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Proof of Theorem 1

Using (5) and the assumption (4) we see that the left-hand
side of (6) takes the form

(RL,)s, — (RL)¢, + [RL,, RL4]
— R[RLs,L,] — R[RL,, LJ] + [RL,, RLy]

= [RL,, RL] — R[L.. g & —alL,, L]
which establishes the equivalence of (7) and (6).
To complete the proof observe that the left-hand side of
(7) can be written as

((Ln)tr)ts - ((Ln)ts)tr - [RLM Ln]ts - [RL57 Ln]tr
= [(RL,):, — (RLs)¢,, L,] + [RL,, [RLs, L;]] — [RLs, [RL,, L,]]

= [(RL,)e, — (RLs);, + [RL, RLJ, L,] 2.
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Commutativity of extended flows

Assume that all elements of g depend on an additional
independent variable y not involved in the Lie bracket.
Theorem 2

Suppose that L € g and L; € g, i € N are such that the
zero-curvature equations (6) hold for all r;s € N, the
R-matrix R on g satisfies

(RL);, = RL,, né€N, (RL), = RL, (9)
and L, satisfy the extended Lax equations

L. =[RL,, L]+ (RL,),, r € N. (10)
Then the flows (10) commute, i.e.,
(ﬁtr)ts T (Ets)tr — 07 r7 S € N (11)
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Proof of Theorem 2

Using equations (10) and the Jacobi identity for the Lie
bracket we obtain

(Le)e, — (L), = [(RLr), — (RLs)e, + [RL;, RLs], £]
+((RL,)t, = (RLs)s, + [RL,, RLJ]),
= 0.

The right-hand side of the above equation vanishes by
virtue of the zero curvature equations (6).
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R-matrices from the Lie algebra decomposition

If g admits a decomposition into two Lie subalgebras g
and g_ such that

g=g+ Dy, [g+,9+] C 9+, grNg_ =0,

the operator

1 1
R==-(P,—P.)=P, — = 12
(PP =P (12)
where P, are projectors onto g., satisfies the classical
modified Yang-Baxter equation (3) with o = %, e, R

defined by (12) is a classical R-matrix.
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Lax—Novikov equations and the hierarchy

Next, let us specify the dependence of L; on y via the
so-called Lax—Novikov equations

[L;, L]+ (L), =0, JEN (13)

Then, upon applying (7), (12) and (13), equations (5), (6)
and (10) are readily seen to take the following form:

(Ls)t, — [BH LS]) r,sc N, (14)
(Br)ts - (Bs)tr + [Bra BS] =0, (15)
L. =[B.L]+(B),  nreN (16)
where B; = P L;.
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Reduction with respect to y

If upon the reduction to the y-independent case we put
L = L, for some n € N, then the hierarchies (10), i.e.,

L. =[RL,, L]+ (RL,),,  reN,

boil down to hierarchies (5) and the Lax-Novikov equations
(13), i.e.,
L), £] + (Lj)y = 0. JeN,

reduce to (a part of) the commutativity conditions (7), i.e.,
[Ln, Lj] = 0. In particular, if the bracket [, ] is such that
equations (10) give rise to integrable systems in d
independent variables, then equations (5) yield integrable
systems in d — 1 independent variables.
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Commutative subalgebras: a standard construction

A standard construction of a commutative subalgebra
spanned by L; whose existence by Theorem 1 ensures
commutativity of the flows (10) is, in the case of Lie
algebras which admit an additional associative
multiplication o which obeys the Leibniz rule

ad,(boc) =ad,(b) o c+ boad,(c), (17)

as follows: the commutative subalgebra in question is
generated by fractional powers of a given element L € g.
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Further remarks

In our setting, when we no longer assume existence

of an associative multiplication on g which obeys the
Leibniz rule (17), the above construction does not work
anymore. To circumvent this difficulty, instead of an
explicit construction of commuting L; we will impose the
zero-curvature constraints (6), i.e.,

(RL.)e, — (RLs)s, + [RL,,RL] =0, r,seN

on chosen elements L; € g, i € N; in our setting

([, -] is the contact bracket, see below), this can be

done in a consistent fashion. By Theorem 1 this guarantees
the commutativity of L; for any R-matrix which obeys the
classical modified Yang—Baxter equation (3) with o # 0.
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The contact bracket setting

Consider a commutative and associative algebra A of
formal series in p of the form f = > u;p’ with the standard

!
multiplication

The coefficients u; of these series are assumed to be smooth
functions of x, y, z and infinitely many times t1, t5, . . ..

The contact bracket on A (see AS, arxiv:1401.2122):

0f, 0 0f, 0f 0t
— Ai— — (A< h). (1
Op Ox p8p82+ 155 (A< £K). (19)

The variable y is not involved in the bracket.

{h. o} =
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The contact bracket setting ||

Note that A is not a Poisson algebra as the contact bracket
(19) does not obey the Leibniz rule. However, it belongs
to a more general class of the so-called Jacobi algebras
that obey the following generalization of the Leibniz rule:

If the unity 1 belongs to the center of the Lie algebra
in question, then (20) boils down to the usual Leibniz rule
and the algebra under study is then just a Poisson algebra.
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The contact bracket setting Ill

To relate to the R-matrix approach, we identify g with A
and the bracket [-, -] in g with the contact bracket (19). As
for the choice of the splitting of g into Lie subalgebras g
with P, being projections onto the respective subalgebras,
we have two natural choices when the R's defined

by (12) satisfy the classical modified Yang—Baxter equation
(3) and thus are R-matrices. These two choices are

P+ — P}k,
where k = 0 or k = 1, and by definition

o0 0

Pk Z a;p' :Zajﬂ-
j=—00 j=k
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General setup for the R-matrix approach

Thus, in our approach we have £ of a general form

L= Z uip’, n>0. (21)
B = Z VP, meEN. (22)
j=k

L and B,, are required to obey the following equations:

Lo = {Bm L} +(Bn)y,, meN, (23)

(Bn)t, — (Bm)t, — {Bm:Ba} =0, mneN. (24)
Egs.(23) define the time evolution (24) relate v, and v, ;.
Below we will subject £ to various constraints.
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Linear Lax pairs

AS, arXiv:1401.2122: a zero-curvature equation
fy —g —{f,g} =0
holds if and only if the following linear system is compatible:
e = Xe(1), by = Xe(¥),
where ¢ = ¥(x,y,z,7,p) and
Xn = hp0x + (ph; — hy)0, + (h — phy)0,

is a contact vector field with the contact Hamiltonian h (so
by definition there exists a function f: Lx,a = fa, where
« = dz + pdx is our contact form, and ix,cv = h).
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ker o for a = dz + pdx
(original image credit: John Etnyre, arXiv:math/0111118)




(34+1)D integrable hierarchies |

Letk:OsoR:%(on—P@). For n > 0 and m > 0 put

Lo=up" +up1p" P dupgtugp o, (25)

By = Vm,um + Vm,m—le_l + o+ Vmp, (26)

where
ui = ui(t,x,y, z),

Vmj = Vm,j(t_-;xuyaz))

and t = (tl, t,... )
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(34+1)D integrable hierarchies Il

Substituting £ and B,, into the zero-curvature equations

Li, ={Bm, L} + (Bm)y (27)
yields a hierarchy of infinite-component systems (m € N)
= Xm < ..
(Ur)tm Xr [U, Vm]a r — n + m7 r # 07 7m7 (28)

(Ur)tm = er[u7 Vm] + (Vm’r)y, r = O, <o, m.

where u, = 0 for r > n; for r < m+ n we put

m

er[u7 Vm] :Z[Svm,s(urfsﬂ)x - (r — S+ ]-)Urferl(Vm,s)x
s=0
—(s = DVims(ur—s)z + (r —s = 1)ur—s(Vins)zl,
U= (Up Up-1,...) and vy, = (Vmo,- - -, Vim)-
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Constraints |

The first equation from the system (28), i.e., the one for
r = n -+ m, takes the form

(n - 1)un(Vm,m)z - (m - ]-)Vm,m(un)z = 07

and hence, for n > 1, m > 1, admits the constraint

=

m—

Vi.m = (Up) " 1. (29)

For n = 1 the constraint in question takes the form
u; = const.
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Constraints |l

Let up = Cny Vinm = Cm.m, Where ¢, Cmm € R.
Then, if ¢, = ¢m.m = 1, we have, for n > 0and m > 0

L=p"+up1p" '+ Fut+upt+-,  (30)
Bm = P+Lm = Pm + VmJn—lpmi1 +o Vm,0, (31)

and equations (27) take the form (28), where now
r < n-+mand

Xr’”[u, Vm] = m(ur—m+1)x - (m - 1)(uf—m)2

m—1
+ Z[svm,S(Ur—sH)x —(r—s+ 1)Ur—s+l(Vm7S)x
s=0

—(5s — DVms(tr—s)z + (r —s — 1) ur—s(vims):)-
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Constraints ||

Again, the first equation from the system (28), i.e., the one
for r = n+ m — 1, takes the form

(n - 1)(Vm7m—1)z - (m - 1)(Un—1)z = 07

so the system under study for n > 1 admits a further
constraint
_(m=1)

mm—-1 — -\ Yn-1- 2
Vi, 1 (n_l)u 1 (3)

It is readily seen that for n = 1 the constraint (32) should
be replaced by ug = const.
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First-order Lax operator

Upon taking up = 0, the Lax equation (27) for
L=p+uiptduop?+---, (33)

and for m = 2, with B, = p> + vip + v generates the
following infinite-component system

(v1)y = (vi)x+ (uo1)2,

(vo)y = (vo)x + (u—2)z — 2(u-1)x + 2u-1(v1),
(ur)e, = 2(ur1)x — (Ur—2)z — (r + Dursa(vo)x  (34)
+V0(Ur) "‘( )Ur(VO)z+ Vl(ur)x

—rup(vi)x + (r — 2)up—1(v1)s,

where r <0 and vo, = v,.
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General case for k =1

Let k =1, when P, = P~;, m>0,n> 0,
L =upp"+upap" o Fugtuap Tt

35
Bm = Vm,mpm + Vm,m—lpmi1 +o Tt Vm,1P, ( )
(u)e, = XMu, V], r<n+m, r#1,....m, (36)
(ur)e, = XU, Vin] + (Vmr)y, r=1,...,m,
where u, =0 for r > n, u= (Up, Up_1,...),
Vm = (Vm1,.-sVmm), and for r < m-+n
m
XMu, v = Z[svm’s(u,_sﬂ)x —(r—s+1)ur—s+1(Vms)x
s=1

—(s = DVms(tr—s)z + (r —s — 1) ur—s(Vims)z]-
For n > 1, m > 1 we again obtain the constraint (29), i.e.,

m—1

Vmm = (Un) "1, and for n = 1 it is replaced by u; = const.
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k = 1: the simplest special case

Let m > 1. Put
L=ptu+uptt -, (37)

B, = 'D+Lm = Vm,m—lpm+Vm7m—2pm_1+' T+ Vm1p. (38)

The first flow for m = 2, where v», = v,, is

(v2)y = (v2)x + wo(v2); + va(uo):z,

(v1)y = (vi)x + wo(v1)z + vau-1);
+2u_1(v2), — 2va(up)x,

(u)e, = vi(ur)x — ru(vi)x + (r —2)ur—1(v1);
+2vo(ur—1)x — (r — 1)u,—1(v2)x
—(Ur-2)z + (r — 3)ur-a2(v2).

(39)
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Finite-component reductions for k =0

We have natural reductions to finite-component systems by
putting u, = 0 for r <1 or r < 0in (25) and (30), i.e.,

L = unpn -+ un—lpn_1 + o+ urpra r= 07 17
N 1 (40)
Bm - (Un) n-1 Pm + Vm,m—lpm_ + e+ Vm,0,

L = pn -+ Un—lpn_l T urpra r= 07 17
(m—1) n1, (41)
—U,_ e Vmo-

(n — 1) 1P 0

The case (41) for r = 0 was considered for the first time in
AS, arXiv:1401.2122. In (40) and (41) for r = 0 L has the
same form as B,, so y can be identified with t,.
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Finite-component reductions for k = 1

We now have two cases:

L = up"+ tp1p" P+ up,

m— 42
B = (tp) "1 p™ + Vi1 p™ L+ e A Vi p; (42)

L =p+u+upt+--+up,

43
Bm — Vm,um + Vm,m—lpm_1 + e+ Vm,1P- ( )

Here m>1and r=0,1,—1,....
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Finite-component reductions for k = 1: an example

L=p+tu+uip’ (44)
and, with a slight variation of the earlier notation, put
B = vop® + vip, B3 = wsp’ + wop” + wyp.
The member of the hierarchy associated with B, reads

(u—1)y, = wu_a(vi)x + vi(u—1)x,
(u0), = —2u-1(v1)z + vi(uo)x
+u_1(v2)x + 2va(u_1)y,
(v1)y = (v1)x +2u_1(v2);
+vo(u_1), + uo(vi): — 2va(uo)x,
(v)y, = (va)x + uo(v2), + vo(up)s,

(45)
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Finite-component reductions for k = 1: an example I

In turn, the flow associated with Bs has the form

(u—l)t3
(UO)f3
(w1)y

(w2)y

(ws)y

u_1(w)x + wa(u-1)x,

wi(ug)x — 2u_1(w1); + u_1(w2)x + 2w (u_1)x,
(Wi)x + wou—1), — u_1(ws)

—2ws(up)x + 2u_1(wr),

+up(wr),; — 3ws(u_1)x,

(wn)x — 3ws(ug)x + 2ws(u_1), + wa(up),
+uo(ws), + 2u_1(ws).,

(ws)x + uo(ws), + 2ws(up)-,
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Finite-component reductions for k = 1: an example Il

Commutativity of the flows associated with t, and t3, i.e.,

(), = ((U)ss),, 7=0,1,

can be readily checked using the zero-curvature equation

(B2)t; — (Bs)e, + {Ba, B3} = 0. (46)

The compatibility conditions

((vi)y), = ((v)z),, =12

are also satisfied by virtue of (45) and (46).
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Finite-component reductions for k = 1: an example IV

Eq.(46) is equivalent to the system

(Vl)z
(V2)z

(Wl)f2

(W2)t2

(W3)t2

V2 VoWs Vo 3
W3(W3)X 4W§ (W3)z + 2W3(W2)Z + 2(V2)X7
2 (ws)..
2W3

vi(wi)x — wi(vi)x + (V1)

vi(wo)x — wi(va)x + 2va(wr)x — 2wo(vi)x + (V2)1s,

2
Vo Wo _ % _ VoW,
2W3 (W2)z 2 (VQ)X 4W?? (W3)z

+(V1W3 — V2W2)(W3)X
w3
—vo(wy), + 2va(wa)x — 3ws(vi)x.
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Finite-component reductions for k = 1: another example

The simplest nontrivial example of Lax pair (42) is given by
L= up’® + wp® + up,
B> = v,p° + vip,

and the associated system reads

0 = 2u3(v2); — va(u3)s,
0 = w(wv), — va(n), +2u3(v1),
+2va(u3)x — 3u3(v2)x
(U3)1r2 = V1(U3)x + 2V2(UQ)X - 2U2(V2)x
—3u3(v1)x — va(un); + ua(v1)s,
(), = (v2)y + vi(u2)x + 2va(u1)x
=2 (v1)x — u1(v2)x,
(1), = (n1)y + vi(un)x — ur(va)x.

(47)
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Finite-component reductions for k = 1: another example |l

The first two of the above equations impose constraints on
the ‘non-dynamical’ fields v; and v,. The first of these
constraints is satisfied once we impose (29), i.e

I\)M—l

Vo = (U3)

and then the second one boils down to

(v1): = Buz(%)élz - E(Us)élx,

vlzéuQ(U3)_ _ o719, { (u3)]

or

A. Sergyeyev (SLU, CZ) Integrable systems in (3+1)D 38 /39



Conclusions and outlook

o New integrable hierarchies of 4D dispersionless systems
were constructed using a suitable modification of the
R-matrix approach for the Lie algebra of functions
w.r.t. the contact bracket

o Open problem: s it possible to generalize our
construction to the case of noncommutative
independent and/or dependent variables?
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