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Introduction

I The DFR model: spacetime and fields

I Friedmann expanding backgrounds

I Friedmann expanding n.c. spacetimes

I Quantum fields and Friedmann equations



The DFR proposal

DFR (1995): “Grav. stability under localization experiments”: Determining the
localization of a quantum field theoretic observable needs concentration of energy
in a region of the size of the uncertainty; extreme precision should cause the
formation of a black hole.
The following program was outlined:

I Derive physically meaningful uncertainty relations between coordinates of
spacetime events from gravitational stability under localization experiments.

I Promote these coordinates to the status of operators and find commutation
relations among them from which the uncertainty relations follow.

I Construct quantum fields over the resulting noncommutative spacetime.

Starting point: fixed classical background, to be recovered by some LP → 0
procedure.



Noncommutative Minkowski space (DFR)

Spacetime uncertainty relations (STUR) derived by the linear approximation:

c∆t
(
∆x1 + ∆x2 + ∆x3

)
≥ L2

P

∆x1∆x2 + ∆x1∆x3 + ∆x2∆x3 ≥ L2
P

From here, commutation relations (in principle, highly non unique!):

[xµ, xν ] = iL2
PQµν , xµ = x∗µ

One can show that the STUR are satisfied using the “Quantum conditions”

[xµ,Qνρ] = 0, QµνQµν = 0, (Qµν(∗Q)µν)2 = 16I .

The xµ generate a C∗-algebra E , (some of) its states are our n.c. Minkowski.
Covariance is granted by the following action of the (full) Poincaré group P:

α(Λ,a)(xµ) = Λνµxν + aµI , α(Λ,a)(Qµν) = Λµ
′

µ Λν
′

ν Qµ′ν′ .



Quantum fields on n.c. Minkowski space

A quantum field Φ on the quantum spacetime is defined by

Φ(x) =

∫
R4

dk e ikx ⊗ Φ̂(k).

It is a map from states on E to smeared field operators,

ω → Φ(ω) = 〈ω ⊗ I ,Φ(x)〉 =

∫
R4

dx Φ(x)ψω(x).

The r.h.s. is a quantum field on the ordinary spacetime, smeared with ψω defined
by ψ̂ω(k) = 〈ω, e ikx〉 . If products of fields are evaluated in a state, the r.h.s. will
in general involve non-local expressions. One has

[Φ(ω),Φ(ω′)] = i

∫
d4xd4y ∆(x − y)ψω(x)ψω′(y).

Thus (smeared) non commutative quantum fields are functions from a quantum
spacetime to a C∗-algebra F (analogue to the one generated by ordinary fields)
and are described by elements affiliated to E ⊗ F . Knowledge of the classical
commutator entails knowledge of its n.c. spacetime counterpart one.



Curved spacetimes and n.c. Einstein’s equations

Problem: generalise the above construction to curved spacetimes. Big problem:
make sense of “n.c. Einstein equations”

Rµν −
1

2
Rgµν = 8πGTµν(Φ) F (Φ) = 0,

[xµ, xν ] = iQµν(g).

Friedmann flat expanding spacetimes with metric (comoving coordinates)

ds2 = dt2 − a(t)2(dx2
1 + dx2

2 + dx2
3 ).

Combination of mathematical simplicity (due to symmetry) and physical
relevance (cosmological models).



Uncertainty relations for FFE spacetimes (comoving coordinates)

I Black holes do not form if the (positive) excess of proper mass-energy δE
inside a two-surface S of proper area ∆A contained in a slice of constant
universal time t0 satisfies the inequality:

√
∆A

(
1

4
√
π

+
H
√

∆A

4πc

)
≥ G

c4
δE .

where H(t) = a′(t)/a(t) is the Hubble parameter (a, a′ > 0).

For a box-like localisation region with comoving edges ∆xc1 ,∆xc2 ,∆xc3 ,

∆A = a2(t)(∆xc1 ∆xc2 + ∆xc1 ∆xc3 + ∆xc2 ∆x3) = a2(t)∆Ac .

Estimate δE making use of Heisenberg’s uncertainty relations and get

a2(t)∆Ac

(
1

4
√

3
+

a′(t)
√

∆Ac

12c

)
≥ λ2

P

2
,

c∆t ·
√

∆Ac min
t∈∆t

{
a(t)

(
1

4
√

3
+

a′(t)
√

∆Ac

12c

)}
≥ λ2

P

2
.



Solving the first inequality with respect to the comoving area ∆Ac gives

∆Ac ≥ f (a(t), a′(t)) ,

with f1 = (x0 − c
√

3a/a′)2 and x0 is the greatest solution of a certain cubic
equation from which one has

c∆t ·
√

∆Ac ≥
λ2
P

2
max
t∈∆t
{a(t)∆Ac} ≥

λ2
P

2
max
t∈∆t
{a(t)f (a(t), a′(t))} .

The corresponding quantum uncertainty relations are:

∆ωAc ≥
λ2
P

2
|ω(f )|,

c∆ωt (∆ωx1 + ∆ωx2 + ∆ωx3) ≥ λ2
P

2
|ω(af )|.



Uncertainty relations for FFE spacetimes (more general coordinates)

Consider new coordinates τ = g(t), x′ = x with g a diffeomorphism. Then for a
large class of g we can write

∆τ =
∆τ

∆t
∆t ' g ′(t)∆t

so that

∆ωAc ≥
λ2
P

2
|ω(f )|, (1)

c∆ωτ (∆ωx1 + ∆ωx2 + ∆ωx3) ≥ λ2
P

2
|ω(af /g ′)|. (2)

where the function f is the same as before. Thus we have a sound “quantisation”
procedure in all these cases. In particular, we can choose g ′ = a (conformal
coordinates) and hence in the following we will speak of “the” function f on right
hand side of the STUR.



Building n.c. FFE spacetimes

Definition. A C∗-algebra E of operators with generators xµ, µ = 0, . . . , 3
affiliated to it is said to be a concrete covariant realisation of the n.c. spacetime
M corresponding to the (classical) spacetime M with global isometry group G if:

1) the relevant STUR are satisfied;

2) there is a (strongly continuous) unitary representation of the global isometry
group G under which the operators η transform as their classical
counterparts (covariance);

3) there is some reasonable classical limit procedure for LP → 0 such that the
ηµ become in an appropriate sense commutative coordinates on some space
containing the manifold M as a factor.

4) For FFE, we should in some suitable sense recover the DFR model in the
limit a→ 1.

For FFE (De Sitter exluded) G = SO(3) n R3. By isotropy and homogeneity, we
restrict attention to c.r. of the form (x0 = t)

[xµ, xν ] = iλ2
PQ(t)µν , [t,Q(t)µν ] = 0, [Q(t)µν ,Q(t)ρσ] = 0.

Here we do not assume that the Q(t)µν ’s are simple functional calculi of t.



The assumptions above and covariance have far reaching consequences. Set
ei = Q0i , mi = εikjQkj (and pass to natural units), then

Proposition. Let the generators t, x satisfy 1) and 3) and the components of
the two-tensor Q(t) be as before. Then the corresponding commutation relations
are of the form

[t, x] = ih1(t)e, [x, x] = im0 + im⊥(t),

with m′0 = 0, m⊥(t) · e = 0 and some function h1. Moreover, the operators
e,m0,m⊥(t) transform as vectors under the action of the automorphism αR ,
R ∈ SO(3).

The proof is obtained by asking that the Jacobi ientity be satisfied.



Next, in analogy with the minkowskian case we impose the following Friedmann
Quantum Conditions:

e2 = I , m2
0 = c · I , m⊥(t) = h2(t)m, m2 = I , hi : sp(t)→ R, h1, h2 > 0,

and e,m0,m are all central. Moreover, m0 ·m⊥ = 0

Proposition. Let xµ, e,m0,m⊥ be as above and the quantum conditions be
satisfied. Then, for any state ω ∈ E∗ in the domain of t, x, e,m⊥, the STUR are
satisfied if h1(t) = h2(t) = f (t).
Sketch of Proof. The operators e,m⊥ being central with joint spectrum Σ, we
perform the corresponding central decomposition of E∗. In this way we obtain,
for example,

∫
Σ

3∑
k=1

∆ωσ
(t)∆ωσ

(xi )dµω(σ) ≥
∫

Σ

√√√√ 3∑
k=1

∆ωσ
(t)2∆ωσ

(xi )2dµω(σ) ≥

≥ 1

2

∫
Σ

||ωσ(h1(t)e)||dµω(σ) =
1

2

∫
Σ

||e(σ)|| · |ωσ(h1(t))|dµω(σ) ≥

≥ 1

2
|
∫

Σ

ωσ(h1(t))dµω(σ)| =
1

2
|ω(h1(t))|.



1) It is not difficult to see that m0 6= 0 entails that ∆ωA ≥ const.+ 1
2ω(h2(t)).

Choosing m0 = e we then recover the the DFR model in the flat limit. In
this case, however, we have a spatial characteristic length independent from
time, that is on the expansion of spacetime. Should we consider this an
interesting physical consequence of noncommutativity?

2) We can overcome this “problem” by adding a new generator and considering
comm. rel. of the form

[t, x] = if (t)e, [x, x] = if (t)(e− f ′(t)m⊥S)

[t,S ] = 0, [x,S ] = −im⊥.

Defining the new central quantity n = e×m⊥ (the symbol ’×’ indicates
here the exterior product), they take the form

[t, e · x] = if (t), [m⊥ · x,S ] = −iI ,

all other commutators being zero. Now ∆ωA ≥ 1
2 (ω(h2(t)) + ω(h′2h2(t)S))

but we can restrict ourselves to states such that ω(h′2h2(t)S) = 0.



Existence of covariant representations

To start with, we observe that a solution is obtained by taking H = L2(R3) (with
Lebesgue measure dξ1dξ2dξ3) and defining

t := F (ξ1), e · x := i
∂

∂ξ1
,

m · x := i
∂

∂ξ2
, y := i

∂

∂ξ3
, S := ξ2,

where a function of (ξ1, ξ2, ξ3) is understood as the corresponding multiplication
operator. The function Φ is given by

−ξ =

∫ F (ξ)

F (0)

ds

f (s)
= G̃ (F (ξ)) → F (ξ) = G̃−1(−ξ),

because G̃ is invertible as a function of Φ (from strict positivity of the function
f ). Notice that Ran(F ) = sp(t) = (a,+∞). We will see that this forbids
realisations in terms of selfadjoint operators.



Given a realization through operators t, x,S , e,m, and (a,R) ∈ R3 oSO(3) =: G ,
a new realization on the same Hilbert space is obtained by

t(a,R) := t, x(a,R) := Rx + aI . S (a,R) := S ,

e(a,R) := Re + aI , m(a,R) := Rm + aI .

Therefore, we will say that a realization is R3 o SO(3)-covariant if there is a
unitary strongly continuous representation U of R3 o SO(3) on H such that

U(a,R)XU(a,R)∗ = X (a,R),

for X = {t, x,S , e,m}. A covariant realisation on the Hilbert space given by∫ ⊕
G

L2(R2) dadR ∼= L2(R2)⊗ L2(G ) is then obtained by a direct integral
construction:

X :=

∫ ⊕
G

X (a,R) dadR,

where X = {t, x,S , e,m} and U(a,R) = I ⊗ λ(a,R), with λ the left regular
representation of G .



The C∗-algebra of the model

I According to noncommutative geometry, C∗-algebras describe topological
noncommutative spaces, but the topological space underlying the class of
spacetimes under consideration is always R4.

However, the coordinate change t → t ′ =
∫ t′

f −1 allows us to write

[t ′, e · x] = iI , [m · x,S ] = −iI .
Since sp(t ′) will be bounded from below in most interesting physical situations,
Schroedinger realisations in terms of selfadjoint operators are ruled out. This
leads us to the Heisenberg semigroup, as opposed to the group He.
Proposition. The C∗-algebra of Friedmann noncomm. spacetime is the groupoid
C∗-algebra C∗(H), where H is the groupoid

H := {(−∞,+∞]× He | [0,+∞] = {(x , a, b, c) ∈ [0,∞]× He : x − b ∈ [0,∞]} ,
with sets of composable elements H2 and of units H0, product, inverse, domain
and range maps d and r given by

H2 := {((x , a, b, c), (x ′, a′, b′, c ′)) ∈ H× H : x ′ = x − b},
(x , a, b, c)(x − b, a′, b′, c ′) := (x , a + a′, b + b′, c + c ′ + ab′),

(x , a, b, c)−1 := (x − b,−a,−b, ab − c), H0 := [0,∞]× {(0, 0, 0)},
d(x , a, b, c) := (x , 0, 0, 0), r(x , a, b, c) := (x − b, 0, 0, 0).



Quantum fields and n.c. Friedmann equations

We do not really know how to make sense of “n.c. Einstein equations”, but for
homogeneous isotropic spacetimes these reduce (with respect to the universal
time t and Tµµ = (ρ,P,P,P)) to

H = 8πρ, 3(H ′ + H2) = −4π(ρ+ 3P)

Conservation of energy implies we can solve for −R = 8πT and consider

H = 8πI ⊗ Ω(T00)

where Ω is a suitable (adiabatic) state. But now the energy-momentum tensor
explicitly depends on a(t) through the commutation relations. Adding the
equation

[xµ, xν ] = iL2
PQµν(a(t)),

we obtain a closed system of equations to solve for a. But how to define a
quantum field?



Problem: we cannot use the naive definition for Minkowski case.
Reason: lack of time-translation invariance → no natural time Fourier transform.
The preceding discussion leads us to the following prescription: consider the
commutative version of the x(ξ)µ as a coordinate transformation and define Φ̂ as
the (ordinary, commutative) Fourier transform of the ordinary field Φ with
respect to the ξ’s and take

Φ(t, x) =

∫
R4

d4k e ikq ⊗ Φ̂(k).

where the q are the DFR operators. This gives of course no creation/destruction
operators but a bona fide object affiliated to E ⊗ F .
Example: The two-point function of the free, scalar, conformally coupled field in
suitable pure, homogeneous, quasi-free states is (S̄k ,Sk are known functions)

Ω((t, x); (t ′, x′)) =
1

8π3

∫
R3

S̄|k|(t)

a(t)

S|k|(t
′)

a(t ′)
e ik·(x−x′)dk

We thus define (the q’s are operators on the left hand side of the tensor product)

Φ(t, x)=
1

4π2

∫
R4

d4ke ikq⊗
[∫

R4

d4ξ′e−ikξ
′
(∫

R3

d3k ′a(k ′)
S|k′|(t(ξ′))

a(t(ξ′))
e−ik

′·x(ξ′) +h.c.

)]
Remark. Outrageously preliminary calculations in a suitably chosen KMS state
(we switch back to universal time) give a(t) ' ect for small times!!
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