Sala 422 12:15 
Seminarium Instytutu

Mr. Aleksandr Dubinin, IFT

Thermodynamics of Mott dissociation of hadronic matter within a generalized Beth-⁠Uhlenbeck approach

We present an effective model for low-energy QCD thermodynamics which provides a microscopic interpretation of the transition from a gas of hadron resonances to the quark-gluon plasma by Mott dissociation of hadrons and compares results with data from lattice QCD simulations.We consider the thermodynamics of the Polyakov-loop extended Nambu–Jona-Lasinio (PNJL) model within the self consistent approximation scheme of the Phi-derivable approach.This allows us to obtain the Generalized Beth-Uhlenbeck (GBU) equation of state.Our approach goes beyond the mean-field description of quark matter by taking into account hadronic correlations as well as their backreaction on the propagator of constituents.The next step in our work is to include more hadronic degrees of freedom than just the low-lying pseudoscalar mesons.For that purpose,we discuss a model for the generic behavior of hadron phase shifts at finite temperature which shares basic features with recent developments within the PNJL model for correlations in quark matter.This model is defined by the temperature dependence of hadron masses and widths as well as for their corresponding continuum thresholds.We also discuss the occurrence of an anomalous mode for mesons composed of quarks with unequal masses which is particularly pronounced for positive kaon (K+) and kappa states at finite densities.It may serve as a possible mechanism to explain the "horn effect" for the K+/pi+ ratio in heavy-ion collisions.