Dr David Edwin Alvarez Castillo

Supporting the existence of the QCD critical point by compact star observations

We present the argument that the observation of a gap in the mass-radius relationship for compact stars which proves the existence of a so-called third family (aka "mass twins") will imply that the $T=0$ equation of state of compact star matter exhibits a strong first order transition with a latent heat that satisfies $Deltaepsilon/epsilon_c > 0.6$. The observation of a disconnected branch (third family) of compact stars in the mass-radius diagram proves the existence of a CEP in QCD. Furthermore we show results of a Bayesian analysis (BA) using disjunct M-R constraints for extracting probability measures for cold, dense matter equations of state. In particular this study reveals that measuring radii of the neutron star twins has the potential to support the existence of a first order phase transition for compact star matter.