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The deconfinement transition at zero baryonic density

The deconfinement/chiral symmetry restoration transition at vanishing
baryon density has been extensively studied using Lattice QCD and its
properties are by now well established.

It is not a “phase transition” but just a smooth analytical crossover;
as a consequence all “critical properties” are observable dependent.

In the following all Lattice QCD results will be related to the chiral
symmetry restoration aspects.

Critical temperature:

Tc |BW = 152(5)MeV Aoki et al. Phys. Lett. B 643, 46 (2006)

Tc |hotQCD = 154(9)MeV Bazavov et al. Phys. Rev. D 85 054503 (2012)

C. Bonati (INFN) Across the deconfinement CPOD 2016 3 / 28



The sign problem at nonvanishing density

Lattice QCD ∼ statistical mechanics with energy = euclidean 4d action

Fermions cannot be directly simulated but they can be integrated out:
Seff (A) = SG (A)− log det[m + /D(A)]

We need det[m + /D(A)] > 0 ∀A to use importance sampling in Lattice
QCD Monte-Carlo simulations.

In all lattice discretizations a relation of the following form holds true:

γ5 /D(µ)γ5 = /D(−µ∗)†

If ℜ(µ) = 0 this relation implies that if λ ∈ σ[ /D(A)] then also
λ∗ ∈ σ[ /D(A)], so that det[m + /D(A)] > 0.

For real µ values det[ /D(A)] /∈ R
+: sign problem.
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Possible way out of the sign problem

Most used (partial) solutions:

reweighting First sample the distribution at µ = 0 then reweight it to
µ 6= 0. Problem: the overlap between the two distributions
goes to zero exponentially as V → ∞.

Taylor expansion Expand everything in powers of µ. The coefficients can
typically be computed at µ = 0. Problem: the higher the
coefficient the more noisy the estimator the worse the scaling
with the volume of the signal to noise ratio.

imaginary µ Perform simulation at imaginary chemical potential (where
there is no sign problem) then analytically continue to real µ.
Problem: systematical errors of the continuation.

Other possibilities: Lefschetz thimble, complex Langevin, canonical
simulations, strong coupling methods, dual variables, density of state
methods, . . .
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The expected phase diagram in the T − µB plane

µB0

T

hadrons

QGP

Main features:

analytic crossover for µ = 0 (no known symmetries to break, it would
be a real transition for massless quarks)

first order transition for T = 0 (simple argument based on light
particles counting)

a second order transition somewhere in the middle
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The known phase diagram in the T − µB plane

µB0

T

hadrons

QGP

?
The region that can be reliably explored by Lattice QCD is the region of
“small” µB , where the results obtained by using different methods can be
tested again each other.

A well posed problem is the determination of Tc(µB) in this region.
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General parametrization of Tc(µB)

Since Z (µB) = Z (−µB), in general Tc(µB) is an even function of µB . For
small µB we thus expect

Tc(µB) = Tc(0)

(

1− κ

(

µB
Tc(0)

)2

+ c

(

µB
Tc(0)

)4

+ · · ·

)

=

= Tc(0)

(

1− κ

(

µB
Tc(µB)

)2

+ c ′
(

µB
Tc(µB)

)4

+ · · ·

)

κ is the curvature of the critical line in the T − µB plane at µB = 0 and it
is an equilibrium property of QCD.

The precise relation between κ and the curvature κf of the freeze-out line
is nontrivial from the theoretical point of view. On the other hand it seems
reasonable that κ ≈ κf .
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Various determinations of κ
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A remainder on the quark chemical potentials

The relations between the conserved charges and the number operators are

B = (Nu + Nd + Ns)/3

Q = (2Nu − Nd − Ns)/3

S = −Ns

The quark chemical potentials are defined in such way that

BµB + QµQ + SµS = Nuµu + Ndµd + Nsµs

thus
µu = µB/3 + 2µQ/3

µd = µB/3− µQ/3

µs = µB/3− µQ/3− µS
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Typical setups and strangeness neutrality

In (almost) all simulations µQ ≡ 0 and one of the two following extreme
cases is used:

1) µu = µd = µB/3; µs = 0

2) µu = µd = µB/3; µs = µB/3

that correspond to
1) µS = µB/3

2) µS = 0

If we want to impose strangeness neutrality (〈Ns〉 = 0) we obtain

0 =
∂ logZ (µB , µS)

∂µS
≃

∂ logZ

∂µS∂µS

∣

∣

∣

∣

µ=0

µS +
∂ logZ

∂µS∂µB

∣

∣

∣

∣

µ=0

µB + · · ·

from which we get a relation between µB and µS .
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Strangeness neutrality and Q/B ratio

Explicitly one can write

µS
T

= s1(T )
µB
T

+s3(T )
(µB
T

)3
+· · ·

At T ≈ Tc we have µS ≃ µB/4
and thus µs ≃ µB/12 = µu/4.

In a similar way µQ can be fixed
by imposing 〈NQ〉 = r〈NB〉,
where r = Z/A ≃ 0.4, obtaining:

µQ
T

= q1(T )
µB
T

+q3(T )
(µB
T

)3
+· · ·
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Kaczmarek et al. PRD (2011)
If the transiton with mℓ ≡ mu = md = 0 is second order, since the baryon
number does not break chiral symmetry, for mℓ ≈ 0 we can define the
scaling variables

t ≃
1

t0

(

T − Tc(0)

Tc(0)
+ κ

(

µB
Tc(0)

)2
)

h ≃
1

h0

mℓ

ms

and thermodynamical observables have the scaling form φ = φ(t, h), thus

κ = Tc(0)
∂φ/∂µ2B
∂φ/∂T

∣

∣

∣

∣

µB=0
T=Tc

=
t0

∂tφ|µB=0
t=0

∂φ

∂(µB/T )2

∣

∣

∣

∣

µB=0
t=0

For ∂tφ the scaling function of the O(4) model was used.

κ defined in this way is the curvature in the chiral limit mℓ = 0.

Chemical potentials setup: µu = µd = µB/3 and µs = 0.
Nf = 2 + 1 p4 staggered action, Nt = 4, 8.

C. Bonati (INFN) Across the deconfinement CPOD 2016 13 / 28



Kaczmarek et al. PRD (2011)
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Kaczmarek et al. PRD (2011)

Possible sources of systematic errors:

the Nf = 2 transition is really second order? No consensus on this
point. From the theoretical point of view “the phase transition can be
second order, with O(4) critical exponents” Pisarski, Wilczek PRL (1984);
it can also be first order.

the values of t0 and h0 are not stable between Nt = 4 and Nt = 8
(they change by around 50%)

large correction to the chiral scaling behaviour are observed in the
magnetic equation of state, that have been taken into account by
adding analytical terms.
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Hegde et al. Lattice 2015

The basic idea is the same of Kaczmarek et al. PRD (2011) but with some
differences

t ≃
1

t0

(

T − Tc(0)

Tc(0)
+ ~µTK~µ

)

h ≃
1

h0

mℓ

ms

where ~µ = (µℓ, µs) and K is a 2× 2 curvature matrix.

For ∂tφ the scaling function of the O(4) model was used.

Again K defined in this way is the curvature in the chiral limit mℓ = 0.

Chemical potentials setup: µℓ ≡ µu = µd and µs .
Nf = 2 + 1 HISQ action, Nt = 6 no continuum limit.
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Hegde et al. Lattice 2015

z = t/h1/(βδ)
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Endrodi et al. JHEP (2011)

Take your favorite observable φ(T , µB) that is monotone at µB = 0 and
let φ0 be its value at the µB = 0 transition. Then define Tc(µB) by the
equation φ(Tc(µB), µB) ≡ φ0. Then

κ ≡ −Tc(0)
dTc(µB)

dµ2
B

∣

∣

∣

∣

µB=0

= Tc(0)
∂φ/∂µ2B
∂φ/∂T

∣

∣

∣

∣

µB=0
T=Tc

Problem: why should it work? Partial solution: when the method by
Kaczmarek et al. works, the method by Endrodi et. al also works (and it
had to give the same answer, compare equations).

Other possible source of systematics: common fit for T an a.

Chemical potentials setup: µu = µd = µB/3 and µs = 0.
Nf = 2 + 1 stout improved fermions with physical masses, Nt = 6, 8, 10.
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Endrodi et al. JHEP (2011)

Only statistical errors considered!
(see also comments in Bellwied et al. PLB (2015)).
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Bellwied et al. PLB (2015)

Simulations with imaginary chemical potential. The procedure is the
following

1 fix some value imaginary value for µ (or µ/T )

2 perform simulations at different T values

3 identify Tc(µ) with standard methods (e.g. peak of susceptibility)

4 fit Tc(µ) with the expected functional form

Chemical potential setup: mostly µQ = 0 and strangeness neutrality, some
tests with Q/B = 0.4. µIB . 300MeV
Nf = 2 + 1 + 1 stout action with physical masses, Nt = 10, 12, 16.

Principal source of systematical errors: extrapolation to vanishing chemical
potential.
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Cea et al. PRD (2014-2015)
Simulations with imaginary chemical potential.
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Nf = 2+ 1 HISQ with ms ∼physical and mℓ/ms = 1/20, Nt = 6, 8, 10, 12

Principal source of systematical errors: extrapolation to vanishing chemical
potential.
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Bonati et al. PRD (2014-2015)

Two different procedures for the continuum limit

1 fix lattice spacing a

2 for each µI compute
Tc(µ

I , a)

3 compute the curvature at
fixed a: κa

4 try several a values and
extrapolate κa to continuum

1 fix lattice spacing a

2 for each µI compute
ψ̄ψr (µI , a) and χr

ψ̄ψ
(µI , a)

3 try several a values and
extrapolate ψ̄ψr (µI , a) and
χr

ψ̄ψ
(µI , a) to continuum

4 find Tc(µ
I , a = 0) using the

results of the previous point

5 compute κ

Chemical potentials setup:
µIu = µId = µIB/3, µ

I
s = 0

µIu = µId = µIs = µIB/3
µIB . 400MeV

Nf = 2 + 1 stout imp. fermions with physical masses, Nt = 6, 8, 10, 12.
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Bonati et al. PRD (2014-2015)
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Bonati et al. PRD (2014-2015) µ-systematics
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Possible explanation for the different behaviour: the different location of
the Roberge Weiss transition.
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Bonati et al. PRD (2014-2015) µ-systematics
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κ from LQCD summary

0 0.005 0.01 0.015 0.02 0.025 0.03
κ

Endrodi et al. JHEP (2011)

Kaczmarek et al. PRD (2011)

Cea et al. PRD (2014)

Bonati et al. PRD (2014)

Bonati et al. PRD (2015)

Bellwied et al. PLB (2015)

Cea et al. PRD (2015)

Hegde et al. (Lattice 2015)

C. Bonati (INFN) Across the deconfinement CPOD 2016 26 / 28



Fit fun
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Conclusions

The study of the critical line of QCD at finite density is an interesting
topics, where great advances are in principle possible both on the
theoretical (e.g. sign problem solution?) and on the experimental side
(e.g. signal of critical point in heavy ions collisions?).

Recent lattice QCD computations are in reasonable agreement with
each other but some fine points have to be further investigated: why
does Taylor expansion/analytic continuation
underestimate/overestimate κ?

Relation between κ and the curvature of the freeze-out curve?
How far can equilibrium physics go?

C. Bonati (INFN) Across the deconfinement CPOD 2016 28 / 28



Thank you for your attention!
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Backup slides with something more
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“real” fit range problem
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The “Columbia plot”
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Phase diagram at imaginary chemical potential
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Phase diagram at imaginary chemical potential
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