Wounded quarks at the LHC

Wojciech Broniowski^{1,2}, Piotr Bożek, Maciej Rybczyński

¹Jan Kochanowski U., Kielce ²Institute of Nuclear Physics PAN, Cracow

Critical Point and the Onset of Deconfinement (CPOD 2016) Wrocław, 30 May - 4 June 2016

Wounded nucleons

▲ ≣ ► ≣ • २२ (२)

 CPOD 16
 2 / 21

・ロト ・日下 ・日下

Wounded nucleons

Wounded - interacted inelastically at least once

Wounded nucleons

Wounded - interacted inelastically at least once

What are the degrees of freedom (sources)? Nucleons, partons, random fields?

Shape-flow transmutation (collectivity)

specific correlations

Wounded nucleon scaling

 $\frac{dN_{ch}^{AB}}{d\eta} = \frac{dN_{ch}^{pp}}{d\eta} N_{\rm W}^{AB}/2 \qquad \text{[Białas, Błeszynski, Czyż 1976]} \\ \frac{dN_{ch}^{AB}}{d\eta} \propto N_{\rm W}^{AB} - \text{weaker scaling (with centrality)}$

Broken scaling for A-A at RHIC

- scaling with centrality broken
- p-p point too low

CPOD 16 5 / 21

 $\mathsf{RHIC}\to\mathsf{LHC}$

CPOD 16 6 / 21

Two component model

• binary (N_{coll}) contribution $\alpha = 0.1 - 0.2$

[Kharzeev, Nardi 2000]

Subnucleonic structure

- wounded quark model [Białas, Czyż, Furmański 1976 + many others]
- quark-diquark model, fitted to p-p scattering [Białas, Bzdak 2006]

At higher collision energies lower distances are probed and nucleons are better resolved \rightarrow more constituents show up (wounded partons)

Constituent quark model - PHENIX

recent (2016) calculations: Lacey et al., Zheng et al., Loizides, Mitchell et al.

- three quarks per nucleon
- Q distribution in N from electron-proton
- hard-sphere Q-Q scattering (8.17mb at 200GeV)
- $\bullet\,$ fairly good scaling with $Q_{\rm W}$, some problem with p-p point

Scaling from longitudinal fluctuations

 $a_{11}^{
m exp}=c^{
m exp}/N_{
m ch}$, longitudinally-extended sources: $a_{11}^{
m mod}=c^{
m mod}/N_+$

Scaling from longitudinal fluctuations

 $a_{11}^{exp} = c^{exp}/N_{ch}$, longitudinally-extended sources: $a_{11}^{mod} = c^{mod}/N_+$ Matching $\rightarrow N_{ch} = 4.7N_+$, acceptance $\Delta \eta = 4.8 \longrightarrow dN_{ch}/d\eta \simeq 1 \times N_+$

Scaling from longitudinal fluctuations

Wounded quark model matching pp scattering

- $\bullet\,$ 3 quarks distributed in each nucleon $\rho(r)\simeq e^{-r/b}$, recentered
- Gaussian Q-Q wounding profile
- parameters fitted to reproduce N-N scattering

200GeV: $\sigma_{QQ} = 7$ mb, $r_{QQ} = 0.29$ fm), 7TeV: $\sigma_{QQ} = 14.3$ mb, $r_{QQ} = 0.30$ fm small change of nucleon size, large increase of σ_{QQ} with \sqrt{s}

Multiplicity distribution p-p and p-A

• overlaid negative binomial distribution on each wounded quark (same width)

pp scattering

• significant eccentricities in p-p

• small size of the interaction region $\sim 0.4 {
m fm}$

CPOD 16 13 / 21

Compact initial size in p-Pb

compact source consistent with p-Pb data (HBT, $< p_{\perp} >$)

Fireball eccentricities in p-Pb

- significant eccentricities in p-Pb
- weak dependence on centrality $(N_{\rm ch})$
- consistent experimental observation of v_2 and v_3 in p-Pb

Wounded quark scaling in AA

- $\bullet\,$ good scaling at the LHC
- approximate scaling at RHIC
- LHC 3 constituents, RHIC 2?

How many partons?

- wounded quark scaling changes with effective number of partons
- for each N_p N-N scattering profile reproduced
- number of constituents increases with energy (?)

Details matter

- sensitive to modeling of N-N scattering
- sensitivity to the nuclear density profile

Eccentricities in AA

- very small effect of subnucleonic structure on eccentricities

 similar to the wounded nucleon model with binary contribution
- similarity for other observables

ALICE:
$$\frac{SC(a,b)}{\langle a^2 \rangle \langle b^2 \rangle} = \frac{\langle a^2 b^2 \rangle - \langle a^2 \rangle \langle b^2 \rangle}{\langle a^2 \rangle \langle b^2 \rangle}$$
$$v_n \simeq \kappa(n,c)\epsilon_n, n = 2, 3 \rightarrow \frac{SC(v_2,v_3)}{\langle v_2^2 \rangle \langle v_3^2 \rangle} = \frac{SC(\epsilon_2,\epsilon_3)}{\langle \epsilon_2^2 \rangle \langle \epsilon_3^2 \rangle}$$

p-p@200GeV - collision of two trianges

Summary

- Wounded quark model for pp, pA, and AA
- Quark distribution in nucleon and Q-Q scattering adjusted to reproduce NN scattering
- Particle production scales with number of wounded quarks at LHC
- Semi-microscopic description of subnucleonic structure in p-Pb consistent with experimental data
- Strongly deformed interaction region in pp
- Indication of an increase of the effective number of partons with \sqrt{s}
- Possibility of studying eccentricity/flow correlations