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Why studying electomagnetic probes...?

Clean and penetrating probe of hot and dense nuclear matter

Reflect the whole dynamics of a collision
↪→ Allows to obtain information about the properties of all stages

of the fireball

Aim of studies: Properties of matter at finite T and µB
↪→ Hadrons in a dense and / or hot environment → More and

more fundamental degrees of freedom dominate
↪→ Understanding the non-perturbative region of QCD
↪→ How are the “two faces” of QCD connected?
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What can we learn from experiment and theory?

Dilepton spectra reflect
trajectories of the system in
QCD phase diagram

RHIC and LHC: High
temperature, low baryochemical
potential → What are the
properties of the QGP?

SIS 18: Moderate temperature and
high baryochemical potential →
What baryonic
medium-modifications do appear?

FAIR: Is there a 1st order phase
transition / a critical point?

⇒ Excitation function: Equation of state of nuclear matter;
test of spectral functions, chiral symmetry restoration?
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Theoretical approaches: Microscopic ↔ Macroscopic

Challenging for theoretical approaches...
1 Hadronic low-energy domain of QCD → No description from

first principles!
2 No fully self-consistent off-equilibrium scheme available!

Models: Simplification of the problem → Approximations
↪→ Need depiction of space-time evolution, various sources and

medium effects

Macroscopic models → Bulk properties of the collision

Fireball description → Quite simplifying, global equilibrium
Hydrodynamics → Needs initial state & description of final
state interactions - applicability at low energies?

Kinetic transport theory → Describe all particle momenta
and positions and all interactions individually
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Hadronic Models

1 Kinetic theory
Realized in transport models (here UrQMD)
Effective solution of the Boltzmann equation
Physics input and parameters: cross-sections (total and
partial), resonance parameters, string fragmentation scheme
“On-shell” quasi-particles on classical trajectories
Collision term includes elastic & inelastic scatterings (e.g.
ππ → ρ) and resonance decays (e.g. N∗ → N + π)

↪→ But: Incoherent summation over processes, missing off-shell
dynamics, restricted to lower densities (no multi-particle
interactions) → Medium effects only partially implemented

2 Hadronic many-body theory
Calculate particle self-energies using quantum field theory
Coherent summation: Accounts for quantum interference

↪→ But: Restricted to equilibrated matter, assumes heat bath

→ Two sides of the same medal!
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Connection between HMBT and transport theory?

Production Processes from  Spectral Function
↔ Cuts (imag. parts) of Selfenergy Diagrams:
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by Ralf Rapp

Spectral function includes contributions explicitly treated in
transport models (Bremsstrahlung, ∆ Dalitz decays)
Coherent vs. incoherent summation of processes – and
different approximations...
...but nevertheless same underlying microscopic physics!
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The Idea: Coarse-Graining

Goal: One approach for all energies, realistic evolution of the
reaction, but limited number of variables
↪→ Combining a realistic 3+1 dimensional microscopic expansion

of the system with macroscopic description of the dilepton
emission

Coarse-graining = Reduction of information → System
uniquely determined by (local) energy and particle densities
Microscopic description → Necessary to average over many
simulation events
Sufficiently large number of events → Distribution function
f (~x , ~p, t) takes a smooth form

f (~x , ~p, t) =

〈 ∑
h

δ3(~x − ~xh(t))δ3(~p − ~ph(t))

〉
UrQMD model constitutes a non-equilibrium approach
↪→ Equilibrium quantities have to be extracted locally at each

space-time point
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Coarse-Graining

First proposed by Huovinen et al. [Phys. Rev. C66, 014903 (2002)]

Put ensemble of UrQMD events on grid of space-time cells

Determine baryon and energy density and use Eckart’s
definition to determine the rest frame properties
→ Use equation of state to calculate T and µB
Two EoS: Free hadron gas with UrQMD-like degrees of
freedom + Lattice EoS for T > 170 MeV
[D. Zschiesche et al., Phys. Lett. B547, 7 (2002); M. He et al., Phys. Rev. C 85 (2012)]
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Where is the advantage?
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Robustness of the evolution → Microscopic details differ,
but evolution of energy and particle densities similar

Medium effects straightforward in terms of T and µB ↔
But: Assumption of local equilibrium necessary
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Accounting for Non-Equilibrium

→ To which extent is equilibrium obtained in the dynamics?

→ How can one deal with deviations from equilibrium?

Macroscopic descriptions → Equilibrium usually introduced
as ad-hoc assumption

Transport models → Non-equilibrium normal case at any
stage

Two aspects have to be taken into account:
1 Kinetic non-equilibrium → momentum-space anisotropies
2 Chemical non-equilibrium → overdense pionic system
→ finite pion chemical potential µπ

⇒ Calculate “effective” energy density and determine µπ in
Boltzmann approximation
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Dilepton & Photon Rates

Emission is calculated for each cell of 4-dim. grid

Electromagnetic emission is related to the imaginary part

of the retarded current-current correlator Π
(ret)
em as

[R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000)]

dNll

d4xd4q
= −α

2
emL(M)

π3M2
fB(q;T )× Im Π(ret)

em (M, ~q;µB,T ),

q0
dNγ

d4xd3q
= −αem

π2
fB(q;T )× Im ΠT ,(ret)

em (q0 = |~q|;µB,T ).

Include ρ and ω spectral functions from HMBT (Rapp et al.),
meson gas contributions and lattice rates for the QGP

Non-thermal dilepton contributions (π, η, φ) directly from
UrQMD + freeze-out ρ and ω (if T < 50 MeV)

↪→ For more details about the CG-approach see PRC 91, 054911 (2015);

PRC 92, 014911 (2015) and PRC 93, 054901 (2016)
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Baseline comparison for SPS / NA60 [S.E. et al., Phys. Rev. C 91, 054911 (2015)]
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The coarse-graining of UrQMD input gives realistic and
nuanced picture of the collision evolution → Detailed
space-time description of temperature and chemical potential

At SPS one reaches temperatures significantly above Tc in
combination with moderate values of µB
Note: Right plot shows maxima of T and µ (central cell), not
average → Different values for each space-time cell!
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NA60 - Dilepton Spectra
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ρ shows broadening compared to case without baryons
QGP and multi-pion annihilation are the relevant sources in
the intermediate mass region

For M > 1.5 GeV/c2 QGP contribution clearly dominates

Duality between hadronic and partonic emission rates?

↪→ Results agree with fireball + hydro calculations; differences in
dynamics
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NA60 - mt Spectra
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NA60 - Comparison of Spectral Functions

Invariant Mass M [GeV]
0 0.2 0.4 0.6 0.8 1 1.2 1.4

]
-1

) 
[2

0 
M

eV
η

/d
ch

)/
(d

N
η

/d
M

d
2

µ
µ

(d
N

-810

-710

-610

ρRapp in-medium 
 ρEletsky in-medium 

Total (Rapp SF)
Total (Eletsky SF)

QGP (Lattice)
πMulti 

ρNon-thermal 

In+In @ 158 AGeV
 > 0 GeV

T
>=120, pη/dch<dN

Invariant Mass M [GeV]
0 0.2 0.4 0.6 0.8 1 1.2 1.4

]
-1

) 
[2

0 
M

eV
η

/d
ch

)/
(d

N
η

/d
M

d
2

µ
µ

(d
N -910

-810

-710

In+In @ 158 AGeV

NA60 Data
 < 0.2 GeV

T
p

 < 1.8 GeV
T

1.6 < p

>=120η/dch<dN

HMBT results ↔ ρ spectral function obtained using empirical
scattering amplitudes from resonance dominance
[V. L. Eletsky et al., Phys. Rev. C64, 035303 (2001)]

Not enough broadening due to low-density expansion of the
self energies → Overshoots data at peak, underestimates for
lower masses
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SIS 18 - Low T , highest µB [S.E. et al., Phys. Rev. C 92, 014911 (2015)]
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Very slow evolution of the fireball

↪→ T and µB remain roughly constant for up to 20 fm/c!

Moderate temperatures and very high baryon density
respectively baryochemical potential → Ideal situation to
study in-medium modifications
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SIS 18 - Dilepton Spectra from HADES
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Significant in-medium broadening of the ρ spectral
function, causing a strong increase of the dilepton yield below
the pole mass

Low-mass enhancement increases with system size

Low temperatures → Higher masses and pole mass peak
suppressed
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SIS 18 - System size & lifetime effects (Elab = 1.76AGeV )
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Non-thermal dileptons represent final hadronic state
(freeze-out volume) → Result scales with A

Thermal dileptons depend on volume and lifetime → Show
increase with A4/3 ≈ A · t ≈ V thermal

4

Waiting for HADES Au+Au data...would be great to have
more systematic studies in future experiments!
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RHIC - Highest T , low µB [S.E. et al., arXiv:1604.06415 [nucl-th]]
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Medium-modified open charm not
yet included

Low baryochemical potential
↪→ Vacuum-like ρ and ω shape 19 / 24
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RHIC - Consistency between STAR and PHENIX results?
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Recent PHENIX measurement and STAR results compatible
Low-mass region well described by theory
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RHIC & LHC - Energy dependence of dilepton production

]2 [GeV/ceeM
0 0.5 1 1.5 2 2.5

 [
M

eV
] 

ef
f

 S
lo

p
e 

P
ar

am
et

er
 T

150

200

250

300

350

400

450

500

2 x 1020-0.1 GeV/c 20.3-0.76 GeV/c -1 x 1021.2-2.8 GeV/cThermalUrQMD

Au+Au (MB) Pb+Pb (0-10%)
19.6 GeV 200 GeV 2.76 TeV

Thermal
UrQMD

| < 1
ee

|y

 [GeV]  
NN

s
210 310 410

N
o

rm
al

iz
ed

 Y
ie

ld

1

10

Thermal Dilepton Yield
2 < 0.3 GeV/cee0.05 < M

2 < 0.6 GeV/cee0.3 < M
2 < 2.5 GeV/cee1.1 < M

 Yield0π

Au+Au / Pb+Pb (0-10%)
| < 1

ee
|y

No qualitative difference between RHIC and LHC results
↪→ µB already close to zero, only higher T
↪→ More QGP and harder slopes

High-mass radiation shows strongest increase when going
from RHIC to LHC
Different mass dependence for thermal and non-thermal slopes
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FAIR - What are the perspectives? [S.E. et al., Phys. Rev. C 93, 054901 (2016)]
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Unexplored transition region
↪→ Hadron gas ↔ QGP
↪→ high µB ↔ moderate µB

High luminosities enable
systematic studies
↪→ Energy, momentum,

centrality, system size, ...
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FAIR - Signals for a phase transition?
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Phase transition effects not very strong ↔ Duality of rates
Several (more prominent) effects make it difficult to find
clear signals for a phase transition
↪→ Non-equilibrium (pion chemical potential)
↪→ Finite baryon density
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What did we learn - what can we learn?

Dilepton spectra from SIS 18 to RHIC and LHC energies can
be consistently described as a combination of

1 a cocktail of hadronic decay contributions,
2 thermal emission from medium-modified vector-meson

spectral functions,
3 and radiation from the Quark-Gluon Plasma phase

Spectra fully determined by trajectory in T − µB plane
Aspects which still have to be studied:

Open charm contribution due to correlated D and D̄ mesons
Influence of the EoS ↔ Consistency with underlying dynamics?
More detailed investigation of the non-equilibrium effects
How do the results compare to purely microscopic calculation?

Wishlist for experimentalists: Systematic studies (of energy
dependence, system size, ...), good statistics, better
constraints for resonance parameters for hadronic models
(pion beam @ HADES)
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