Probing the nature of phases across the phase transition at finite isospin chemical potential

Rajiv V. Gavai* Department of Theoretical Physics Tata Institute of Fundamental Research Mumbai, INDIA

* Work in progress with G. S. Bali & G. Endrődi (Regensburg) and N. Mathur (TIFR)

CPOD 2016, University of Wroclaw, Poland June 4, 2016

Introduction : Why μ_I ?

- Protons convert to neutrons and neutrinos via electron capture in the core of neutron stars, leading to high baryon density with considerable I_3 , i.e., finite isospin.
- Using μ_u and μ_d as light quark chemical potentials, one has $\mu_B = 3(\mu_u + \mu_d)/2$ and $\mu_I = (\mu_u \mu_d)/2$
- No sign/phase problem for $\mu_B=0$ but $\mu_I
 eq 0$. (Son-Stephanov PRL '01, Kogut-Sinclair PRD '02)

Introduction : Why μ_I ?

- Protons convert to neutrons and neutrinos via electron capture in the core of neutron stars, leading to high baryon density with considerable I_3 , i.e., finite isospin.
- Using μ_u and μ_d as light quark chemical potentials, one has $\mu_B = 3(\mu_u + \mu_d)/2$ and $\mu_I = (\mu_u \mu_d)/2$
- No sign/phase problem for $\mu_B=0$ but $\mu_I
 eq 0$. (Son-Stephanov PRL '01, Kogut-Sinclair PRD '02)
- For QCD with two flavours, quarks are two component spinors, leading to a quark matrix :

$$M = \begin{pmatrix} \mathcal{D}(\mu_I) + m & \lambda \gamma_5 \\ -\lambda \gamma_5 & \mathcal{D}(-\mu_I) + m \end{pmatrix}$$

where λ is introduced as an isospin-breaking term to study SSB in $\lambda \to 0$ limit.

- The fermion determinant can be shown to be real, and for staggered fermions the usual techniques work to simulate the theory, as shown by Kogut-Sinclair (PRD '02), who also obtained first numerical results for the phase transition.
- Employing staggered fermions on 8^4 lattices with a = 0.299(2) fm & lattice quark mass ma = 0.025, corresponding to $m_{\pi} \simeq 260$ MeV, Endrődi (PRD '15) investigated the phase structure.

- The fermion determinant can be shown to be real, and for staggered fermions the usual techniques work to simulate the theory, as shown by Kogut-Sinclair (PRD '02), who also obtained first numerical results for the phase transition.
- Employing staggered fermions on 8^4 lattices with a = 0.299(2) fm & lattice quark mass ma = 0.025, corresponding to $m_{\pi} \simeq 260$ MeV, Endrődi (PRD '15) investigated the phase structure.
- He computed the chiral condensate, the pion condensate, and the isospin density by using,

$$\langle \bar{\psi}\psi \rangle = \frac{T}{V} \frac{\partial \log Z}{\partial m}, \\ \langle \pi \rangle = \langle \bar{\psi}_u \gamma_5 \psi_d - \bar{\psi}_d \gamma_5 \psi_u \rangle = \frac{T}{V} \frac{\partial \log Z}{\partial \lambda}, \\ \langle n_I \rangle = \frac{T}{V} \frac{\partial \log Z}{\partial \mu_I}$$

and obtained $a\mu_I^c \simeq 0.2$.

• $\lambda \to 0$ extrapolation in yellow, points (linear), line (chiral). • Grey vertical band denotes $m_{\pi}/2$.

• Pion condensate & Isospin density become nonzero around $\mu_I^c\simeq m_\pi/2$, where chiral condensate vanishes as well.

• $\lambda \to 0$ extrapolation in yellow, points (linear), line (chiral). • Grey vertical band denotes $m_{\pi}/2$.

• Pion condensate & Isospin density become nonzero around $\mu_I^c \simeq m_\pi/2$, where chiral condensate vanishes as well. • Polyakov loop displayed in the upper half of the left panel shows deconfinement to occur there as well.

Introduction II : Nature of Probe

- High μ phase appears to have restored chiral symmetry and deconfinement. Leading candidate for χ SB – topological excitations.
- Successful phenomenology built on Instanton-fermion couplings. (Schafer-Shuryak RMP '98, Diakanov hep-ph/9602375)

Introduction II : Nature of Probe

- High μ phase appears to have restored chiral symmetry and deconfinement. Leading candidate for χ SB – topological excitations.
- Successful phenomenology built on Instanton-fermion couplings. (Schafer-Shuryak RMP '98, Diakanov hep-ph/9602375)
- LQCD simulations also support it : Instanton-distribution peaks at a radius $\rho = 0.3$ fm (DeGrand-Hasenfratz PRD '01).

Introduction II : Nature of Probe

- High μ phase appears to have restored chiral symmetry and deconfinement. Leading candidate for χ SB – topological excitations.
- Successful phenomenology built on Instanton-fermion couplings. (Schafer-Shuryak RMP '98, Diakanov hep-ph/9602375)
- LQCD simulations also support it : Instanton-distribution peaks at a radius $\rho = 0.3$ fm (DeGrand-Hasenfratz PRD '01).

♠ Note that Overlap Dirac operator, which has *exact* chiral symmetry on the lattice as well as an index theorem, was used for the analysis above.

The Overlap Dirac operator spectra has also been used to understand the nature of the high temperature phase.

 \Diamond Number of low eigen modes do get depleted as $T \uparrow$. (Edwards-Heller-Kiskis-Narayanan, PRL '99, NPB (PS) '00, PRD '01; Gavai-Gupta-Lacaze, PRD '02)

The Overlap Dirac operator spectra has also been used to understand the nature of the high temperature phase.

 \Diamond Number of low eigen modes do get depleted as $T \uparrow$. (Edwards-Heller-Kiskis-Narayanan, PRL '99, NPB (PS) '00, PRD '01; Gavai-Gupta-Lacaze, PRD '02)

 \diamond Furthermore, a gap appears to separate the low modes from others.

Overlap Dirac-Neuberger fermions possess satisfy the following correlator equalities in the chirally symmetric phase : $C_S(z) = -C_{PS}(z)$ and $C_V(z) = C_{AV}(z)$.

Overlap Dirac-Neuberger fermions possess satisfy the following correlator equalities in the chirally symmetric phase : $C_S(z) = -C_{PS}(z)$ and $C_V(z) = C_{AV}(z)$.

♠ Localized zero modes seen for 1.25 $\leq T/T_c \leq 2$: $U_A(1)$ restored only gradually up to $2T_c$. (G-G-L,PRD 2002)

CPOD 2016, University of Wroclaw, Poland June 4, 2016

Overlap Dirac-Neuberger fermions possess satisfy the following correlator equalities in the chirally symmetric phase : $C_S(z) = -C_{PS}(z)$ and $C_V(z) = C_{AV}(z)$.

 \heartsuit Vector and Axial vector correlators \bigstar Localized zero modes seen for 1.25equal above T_c but Pseudoscalar and $\leq T/T_c \leq 2$: $U_A(1)$ restored onlyscalar equal only without zero modes gradually up to $2T_c$. (G-G-L,PRD 2002) $(T = 1.5T_c \text{ above})$.

Our Results

- We employed the Arnoldi method to extract the eigenvalues of Overlap Dirac operator (defined on dynamical configurations with nonzero μ_I), demanding a residue $r = ||DX \eta|| \le 10^{-10}$.
- Extracted \sim 500 eigenvalues from each configuration.

Our Results

- We employed the Arnoldi method to extract the eigenvalues of Overlap Dirac operator (defined on dynamical configurations with nonzero μ_I), demanding a residue $r = ||DX \eta|| \le 10^{-10}$.
- Extracted \sim 500 eigenvalues from each configuration.
- Used a larger $24^3 \times 6$ lattice and a Symanzik improved action with 2 stout steps at the physical pion mass.
- $a\mu_I^c = 0.1$ here, which again corresponds to μ_I^c being $m_{\pi}/2$.
- Computations made at two μ_I values, below and above the transition and two different λ the isospin breaking parameter in the quark matrix.

$\lambda=0.0006$

 \heartsuit We examined Overlap Dirac eigenmodes for $\mu/\mu_I \simeq 0.5$ and 1.5, corresponding to $a\mu_I = 0.05$ and 0.15 respectively.

$\lambda=0.0006$

 \heartsuit We examined Overlap Dirac eigenmodes for $\mu/\mu_I \simeq 0.5$ and 1.5, corresponding to $a\mu_I = 0.05$ and 0.15 respectively.

 \heartsuit As expected, the overlap is indeed significant. Alternatively, the surprise is confirmed to be not an illusion.

 \heartsuit Looking at the eigenvalue distribution on a log scale, one can easily identify the zero modes from the gap in the spectrum. Explicit chirality checks needed to confirm their nature.

 $\oint \mu/mu_I = 0.5$: Zero modes get separated from the others visually.

 \heartsuit Looking at the eigenvalue distribution on a log scale, one can easily identify the zero modes from the gap in the spectrum. Explicit chirality checks needed to confirm their nature.

 \heartsuit Zooming in on the eigenvalue distribution on the log scale to see if the near-zero modes have any difference which was missed.

 $\oint \mu/mu_I = 0.5$: Nice smooth fall-off is seen.

 \heartsuit Zooming in on the eigenvalue distribution on the log scale to see if the near-zero modes have any difference which was missed.

\heartsuit No visible difference in the near-zero mode distributions.,

$\lambda=0.0025$

 \heartsuit Again we examined Overlap Dirac eigenmodes for $\mu/\mu_I \simeq 0.5$ and 1.5, corresponding to $a\mu_I = 0.05$ and 0.15 respectively.

$\lambda=0.0025$

 \heartsuit Again we examined Overlap Dirac eigenmodes for $\mu/\mu_I \simeq 0.5$ and 1.5, corresponding to $a\mu_I = 0.05$ and 0.15 respectively.

What about Zero Modes?

Nonzero modes are doubly degenerate for Overlap fermions as a result of the chiral symmetry.

- \diamond Zero modes are *not* degenerate & come with specific chirality, +ve or -ve.
- Act as a direct measure of topology.

What about Zero Modes?

Nonzero modes are doubly degenerate for Overlap fermions as a result of the chiral symmetry.

- \diamond Zero modes are *not* degenerate & come with specific chirality, +ve or -ve.
- Act as a direct measure of topology.
- For $T \neq 0$, Gavai-Gupta-Lacaze (PRD '02) found
- $\begin{array}{ccc} T/T_c & N_{zero} \\ 1.25 & 18 \\ 1.5 & 8 \\ 2.0 & 1 \end{array}$
- A steep fall off is seen. Note N_{zero} substantial near T_c .

What about Zero Modes?

A Nonzero modes are doubly degenerate for Overlap fermions as a result of the chiral symmetry.

- \diamond Zero modes are *not* degenerate & come with specific chirality, +ve or -ve.
- Act as a direct measure of topology.
- For $T \neq 0$, Gavai-Gupta-Lacaze• For $\mu_I \neq 0$, we find for same (PRD '02) found number of configs (50) :

T/T_c	N_{zero}			μ_I/μ_I^c	$N_{zero}^{0.0006}$	$N_{zero}^{0.0025}$	
1.25	18			0.5	426	416	
1.5	8			1.5	451	310	
2.0	1			• No va	riation a	cross μ_I	for $\lambda =$
• A steep fall off is seen. Note $N_{zero} 0.0006$ & a mild one for $\lambda = 0.0025$							
substantial near T_c .			(25% re	(25% reduction)			

Summary

- We investigated the eigenvalue distribution for chirally exact Overlap Dirac operator for $\mu_I/\mu_I^c = 0.5 \& 1.5$, *i. e.*, below and above the isospin phase transition.
- The distribution of zero and near-zero modes is nearly the same for both at $\lambda = 0.0006$, with a 25 % reduction in former at $\lambda = 0.0025$.

Summary

- We investigated the eigenvalue distribution for chirally exact Overlap Dirac operator for $\mu_I/\mu_I^c = 0.5 \& 1.5$, *i. e.*, below and above the isospin phase transition.
- The distribution of zero and near-zero modes is nearly the same for both at $\lambda = 0.0006$, with a 25 % reduction in former at $\lambda = 0.0025$.
- This should be contrasted with the earlier $T \neq 0$ results, where too these modes were present above the transition but decreased sharply as one moved away from the transition.
- Further investigations are going on to pin down the changes in the near-zero modes more quantitatively in an effort to understand the difference in T and μ_I directions.

CPOD 2016, University of Wroclaw, Poland June 4, 2016