Critical Point and Onset of Deconfinement 2016

QCD thermodynamics in the crossover/freeze-out region

Frithjof Karsch
Brookhaven National Laboratory & Bielefeld University

- characterization of bulk thermodynamics and fluctuations of conserved charges in the crossover region
- Taylor expansion of the equation of state
- constraining the location of the critical point

Probing the properties of matter through the analysis of conserved charge fluctuations

Where is the critical point?

Using Taylor expansions in the range $0 \le \mu_B/T \le 3$ to

- explore structure of the phase diagram in the experimentally accessible regime
- characterize the properties of matter in this region

Probing the properties of matter through the analysis of conserved charge fluctuations

Taylor expansion of the QCD pressure: $rac{P}{T^4} = rac{1}{VT^3} \ln Z(T,V,\mu_B,\mu_Q,\mu_S)$

$$\left(egin{array}{c} rac{P}{T^4} = \sum_{i,j,k=0}^{\infty} rac{1}{i!j!k!} \chi^{BQS}_{ijk}(T) \left(rac{\mu_B}{T}
ight)^i \left(rac{\mu_Q}{T}
ight)^j \left(rac{\mu_S}{T}
ight)^k \end{array}
ight)^i$$

cumulants of net-charge fluctuations and correlations:

$$\chi_{ijk}^{BQS} = \left. rac{\partial^{i+j+k}P/T^4}{\partial \hat{\mu}_B^i \partial \hat{\mu}_Q^j \partial \hat{\mu}_S^k}
ight|_{\mu_{B,Q,S}=0} \quad , \quad \hat{\mu}_X \equiv rac{\mu_X}{T}$$

the pressure in hadron resonance gas (HRG) models:

$$egin{aligned} rac{p}{T^4} &= \sum_{m \in meson} \ln Z_m^b(T,V,\mu) + \sum_{m \in baryon} \ln Z_m^f(T,V,\mu) \ &\sim \mathrm{e}^{-m_H/T} \mathrm{e}^{(B\mu_B + S\mu_S + Q\mu_Q)/T} \end{aligned}$$

pressure, entropy & energy density

- consistent with results from Budapest-Wuppertal (stout): S. Borsanyi et al., PL B730, 99 (2014)
- up to the crossover region the QCD EoS agrees quite well with hadron resonance gas (HRG) model calculations; However, QCD results are systematically above HRG

$$egin{aligned} rac{P}{T^4} = \sum_{i,j,k=0}^{\infty} rac{1}{i!j!k!} \chi_{i,j,k}^{BQS}(T) \left(rac{\mu_B}{T}
ight)^i \left(rac{\mu_Q}{T}
ight)^j \left(rac{\mu_S}{T}
ight)^k \end{aligned}$$

the simplest case: $\mu_S = \mu_Q = 0$

$$rac{P(T,\mu_B)}{T^4} = rac{P(T,0)}{T^4} + rac{\chi_2^B(T)}{2} \left(rac{\mu_B}{T}
ight)^2 + rac{\chi_4^B(T)}{24} \left(rac{\mu_B}{T}
ight)^4 + \mathcal{O}((\mu_B/T)^6)$$

Hadron resonance gas (HRG) in Boltzmann approximation:

$$\frac{P(T, \mu_B)}{T^4} = \frac{P(T, 0)}{T^4} + \sum_{m_i \in \text{baryons}} f(m_i/T) \left(\cosh(\mu_B/T) - 1 \right)$$

$$\left(rac{P}{T^4} = \sum_{i,j,k=0}^{\infty} rac{1}{i!j!k!} \chi_{i,j,k}^{BQS}(T) \left(rac{\mu_B}{T}
ight)^i \left(rac{\mu_Q}{T}
ight)^j \left(rac{\mu_S}{T}
ight)^k
ight)$$

the simplest case: $\mu_S = \mu_Q = 0$

$$rac{P(T,\mu_B)}{T^4} = rac{P(T,0)}{T^4} + rac{\chi_2^B(T)}{2} \left(rac{\mu_B}{T}
ight)^2 + rac{\chi_4^B(T)}{24} \left(rac{\mu_B}{T}
ight)^4 + \mathcal{O}((\mu_B/T)^6)$$

An $\mathcal{O}((\mu_B/T)^4)$ expansion is exact in a QGP up to $\mathcal{O}(g^2)$

HRG vs. QCD:

 $\mathcal{O}((\mu_B/T)^4)$:difference is less than 3% at $\mu_B/T=2$

 $\mathcal{O}((\mu_B/T)^6)$:difference is less than 2% at $\mu_B/T=3$

$$\frac{\Delta(T,\mu_B)}{T^4} = \frac{P(T,\mu_B) - P(T,0)}{T^4} = \frac{\chi_2^B}{2} \left(\frac{\mu_B}{T}\right)^2 \left(1 + \frac{1}{12} \frac{\chi_4^B}{\chi_2^B} \left(\frac{\mu_B}{T}\right)^2\right)$$

variance of net-baryon number distribution

kurtosis*variance

P. Hegde (BNL-Bielefeld-CCNU), arXiV:1412.6727

 $\kappa_B\sigma_B^2$

- leading and next-to-leading order corrections agree well with HRG for T<150 MeV
- already in the crossover region deviations from HRG can reach ~40% for T~165 MeV

$$rac{\Delta(T,\mu_B)}{T^4} = rac{P(T,\mu_B) - P(T,0)}{T^4} = rac{\chi_2^B}{2} \left(rac{\mu_B}{T}
ight)^2 \left(1 + rac{1}{12}rac{\chi_4^B}{\chi_2^B} \left(rac{\mu_B}{T}
ight)^2
ight)$$

estimating the $\mathcal{O}((\mu_B/T)^6)$ correction: $\sim \frac{1}{720} \frac{\chi_6^B}{\chi_5^B} \left(\frac{\mu_B}{T}\right)^6$

 \Longrightarrow The EoS is well controlled for $\mu_B/T \leq 2$ or equivalently $\sqrt{s_{NN}} \geq 20~{
m GeV}$

P. Hegde (BNL-Bielefeld-CCNU), arXiV:1412.6727

Lines of constant physics and freeze-out

175

$$T_f(\mu_B) = T_f(0) \left(1 - \kappa_{f,2} \hat{\mu}_B^2 - \kappa_{f,4} \hat{\mu}_B^4 \right)$$

$$\mu_Q=\mu_S=0$$
 :

constant pressure: $\kappa_{2,p} \simeq 0.011$

crossover line: $\kappa_{2,c} \simeq 0.006 - 0.013$

constant energy density: $\kappa_{2,\epsilon} \simeq 0.013$

Chiral transition and freeze-out

LGT: $T_c(\mu_B) = 154(9)(1 - 0.0066(7)(\mu_B/T)^2) \text{MeV}$

10

Chiral transition and freeze-out

- chiral transition temperature: Tc= 154 (8) (1) MeV

error band on Tc is mainly statistical;
 physics is quite different at lower and upper end of the current error bar

baryon number – electric charge correlations

 $T \simeq 150 \; \mathrm{MeV}$:

correlations similar to HRG

 $T \simeq 165 \; \mathrm{MeV}$:

correlations very different from HRG

Some 4th and 6th order cumulants

Exploring the QCD phase diagram

More moderate questions:

- Can we understand the systematics seen in cumulants of charge fluctuations in terms of QCD thermodynamics?
- How far do we get with low order Taylor expansions of QCD in explaining the obvious deviations from HRG model behavior ?

For $\sqrt{s} \geq 20~{\rm GeV}$: Structure of (net-electric charge and) net-proton cumulants is inconsistent with HRG thermodynamics, but can eventually be understood in terms of QCD thermodynamics in a next-to-leading order Taylor expansion

Conserved charge fluctuations and freeze-out

$$rac{\Delta(T,\mu_B)}{T^4} = rac{P(T,\mu_B) - P(T,0)}{T^4} = rac{\chi_2^B}{2} \left(rac{\mu_B}{T}
ight)^2 \left(1 + rac{1}{12}rac{\chi_4^B}{\chi_2^B} \left(rac{\mu_B}{T}
ight)^2
ight)$$

$$rac{M_B}{\sigma_B^2} = rac{\mu_B}{T} + \mathcal{O}(\mu_B^3)$$

$$S_B \sigma_B = rac{\mu_B}{T} rac{\chi_4^B}{\chi_2^B} + \mathcal{O}(\mu_B^3)$$

no need for talking about a chemical potential

$$S_B\sigma_B=rac{M_B}{\sigma_B^2}rac{\chi_4^B}{\chi_2^B}+\mathcal{O}(\mu_B^3)$$

Conserved charge fluctuations and freeze-out mean, variance and skewness

NLO Taylor expansion

$$S_{B}\sigma_{B} = \frac{\chi_{4}^{B}}{\chi_{2}^{B}} \frac{M_{B}}{\sigma_{B}^{2}} + \frac{1}{6} \left(\frac{\chi_{6}^{B}}{\chi_{2}^{B}} - \left(\frac{\chi_{4}^{B}}{\chi_{2}^{B}} \right)^{2} \right) \left(\frac{M_{B}}{\sigma_{B}^{2}} \right)^{3} + \dots \quad \mu_{Q} = \mu_{S} = 0$$

$$R_{31}^{B} \equiv \frac{S_{B}\sigma_{B}^{3}}{M_{B}} = R_{31}^{B,0} + R_{31}^{B,2} \left(\frac{M_{B}}{\sigma_{B}^{2}} \right)^{2} \qquad \qquad \text{F. Karsch et al., arXiv:1512.06987}$$

$$S_{p}\sigma_{p}^{3}/M_{p} \qquad \qquad 1.2 \qquad \qquad$$

Conserved charge fluctuations and freeze-out mean, variance and skewness

NLO Taylor expansion

intercept consistent with QCD result,

Conserved charge fluctuations and freeze-out mean, variance and skewness

NLO Taylor expansion

$$S_B\sigma_B=rac{\chi_4^B}{\chi_2^B}rac{M_B}{\sigma_B^2}+rac{1}{6}\left(rac{\chi_6^B}{\chi_2^B}-\left(rac{\chi_4^B}{\chi_2^B}
ight)^2
ight)\left(rac{M_B}{\sigma_B^2}
ight)^3+...$$

$$m{R_{31}^B} \equiv rac{S_B \sigma_B^3}{M_B} = R_{31}^{B,0} + m{R_{31}^{B,2}}m{(R_{12}^B)}^2$$

lattice QCD calculation involves 6th order cumulants

- intercept consistent with QCD result,
- curvature consistent with QCD result (still noisy, coarse lattice)

Conserved charge fluctuations and freeze-out mean, variance, skewness and kurtosis

F. Karsch et al., arXiv:1512.06987

$$egin{aligned} egin{aligned} R_{31}^B &= R_{31}^{B,0} + R_{31}^{B,2} \left(rac{\mu_B}{T}
ight)^2 \ R_{42}^B &= R_{42}^{B,0} + R_{42}^{B,2} \left(rac{\mu_B}{T}
ight)^2 \end{aligned}
ight\}$$

$$egin{align} rac{\mu_S = \mu_Q = 0:}{R_{42}^{B,2} = 3R_{31}^{B,2} = rac{1}{2} \left(rac{\chi_6^B}{\chi_2^B} - \left(rac{\chi_4^B}{\chi_2^B}
ight)^2
ight) \end{aligned}$$

Conserved charge fluctuations and freeze-out mean, variance, skewness and kurtosis

in a NLO Taylor expansion
$$R_{31}^B \equiv S_B \sigma_B^3/M_B$$
 are closely related $R_{42}^B \equiv \kappa_B \sigma_B^2$

F. Karsch et al., arXiv:1512.06987

$$egin{aligned} m{R_{31}^B} &= R_{31}^{B,0} + R_{31}^{B,2} \left(rac{\mu_B}{T}
ight)^2 \ m{R_{42}^B} &= R_{42}^{B,0} + R_{42}^{B,2} \left(rac{\mu_B}{T}
ight)^2 \end{aligned}
ight\},$$

$$\mu_S=\mu_Q=0$$
 :

$$m{R_{42}^{B,2}} = 3 R_{31}^{B,2} \! = rac{1}{2} \left(rac{\chi_6^B}{\chi_2^B} - \left(rac{\chi_4^B}{\chi_2^B}
ight)^2
ight)$$

Constraining the location of the critical point

X. Luo (STAR Collaboration), PoS CPOD2014 (2014) 019

LGT attempts to find the critical point

since 10 years no progress along this line

S. Ejiri, PRD69, 094506 (2004)

Complex Langevin vs. Reweighting

- the silent death of the Fodor/Katz critical point? -

Z. Fodor, S. Katz. D Sexty, C. Torok, Phys. Rev. D 92 (2015) 094516

from Conclusion:

...reweighting from zero μ breaks down because of the overlap and sign problems around

$$\frac{\mu}{T} = 1 - 1.5$$

i.e.
$$\frac{\mu_B}{T}=3-4.5$$

this should be compared to the first Fodor/Katz critical point estimate on lattices with comparable parameters:

$$rac{\mu_B^{crit}}{T}=4.5(3)$$

Z. Fodor, S. Katz. JHEP 0203 (2002) 014

(calculations with physical quark masses eventually lead to a twice smaller estimate for the critical chemical potential)

Taylor expansion of the pressure and critical point

$$rac{P}{T^4} = \sum_{n=0}^{\infty} rac{1}{n!} \chi_n^B(T) \left(rac{\mu_B}{T}
ight)^n$$

for simplicity : $\mu_Q = \mu_S = 0$

estimator for the radius of convergence:

$$\left(rac{\mu_B}{T}
ight)_{crit,n}^{\chi} \equiv r_n^{\chi} = \sqrt{\left|rac{n(n-1)\chi_n^B}{\chi_{n+2}^B}
ight|}$$

 radius of convergence corresponds to a critical point only, iff

$$\chi_n > 0$$
 for all $n \geq n_0$

forces P/T^4 and $\chi_n^B(T,\mu_B)$ to be monotonically growing with μ_B/T

at
$$T_{CP}$$
 : $\kappa_B\sigma_B^2=rac{\chi_4^B(T,\mu_B)}{\chi_2^B(T,\mu_B)}>1$

if not:

- radius of convergence does not determine the critical point
- Taylor expansion can not be used close to the critical point

Estimates of the radius of convergence

a challenging prediction from susceptibility series for standard staggered fermions:

$$\left(rac{\mu_B}{T}
ight)_{crit,n}^{\chi} \equiv r_n^{\chi} = \sqrt{\left|rac{n(n-1)\chi_n^B}{\chi_{n+2}^B}
ight|}$$

huge deviations from HRG in 6th order cumulants!

S. Datta et al., PoS Lattice2013 (2014) 202

suggests a critical point for $\mu_B/T < 2$

at present, we cannot rule it out!

BNL-Bielefeld-CCNU

Some 4th and 6th order cumulants

estimates/constraints on critical point location

05/30/16: based on ongoing calculations of 6th order Taylor expansion coefficients performed by the Bielefeld-BNL-CCNU collaboration

Conclusions

– results on bulk thermodynamics coming from Taylor expansion of the QCD partition function are already now reliable in the range $0 \le \mu_B/T \le 2$

bulk QCD thermodynamics in the entire parameter range accessible to BES I and II may soon be accessible also through Taylor expansions

 attempts to understand freeze-out/hadronization in terms of HRG model based calculations at temperatures T > 160 MeV are difficult to conciliate with QCD;

QCD thermodynamics is quite different from HRG thermodynamics at T > 160 MeV

– properties of cumulants measured in BES-I for $\sqrt{s_{NN}} \leq 20~{
m GeV}$ clearly differ from HRG thermodynamics but are consistent with QCD thermodynamics close to the crossover transition temperature

$$S_B\sigma_B < M_B/\sigma_B^2 \;\;,\;\; \kappa_B\sigma_B^2 - S_B\sigma \sim \left(M_B/\sigma_B^2\right)^2$$

– with increasing statistical accuracy current LGT calculations seem to favor estimates for the location of the critical point (if it exists) at values of $\mu_B/T>2$

Equation of state and transition temperature

$$T_c = (154 \pm 9) \; \mathrm{MeV}$$

- well defined pseudo-critical temperature
- quark mass dependence of susceptibilities consistent with O(4) scaling

A. Bazavov et al. (hotQCD), Phys. Rev. D85, 054503 (2012), arXiv:1111.1710

lattice: $N_{\sigma}^3 \cdot N_{ au}$ temperature: $T=1/N_{ au}a$

Critical temperature from location of peak in the fluctuation of the chiral condensate (order parameter):

Chiral susceptibility

$$\chi_{l} = \frac{T}{V} \frac{\partial^{2} \ln Z}{\partial m_{l}^{2}} = \chi_{l,disc} + \chi_{l,con}$$

$$140$$

$$120$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$100$$

$$1$$

Strangeness-Baryon number Correlations HRG vs. QCD

Koch ratios

A. Bazavov et al., Phys. Rev. Lett. 113, 072001 (2014), arXiv:1404.6511

continuum extrapolated results on strangeness-baryon correlations do NOT agree with a conventional hadron resonance gas, based on experimentally known resonances listed in the particle data tables

in the crossover region (and above):

PDG-HRG ≠ QCD

Conserved charge fluctuations and freeze-out

$$rac{\Delta(T,\mu_B)}{T^4} = rac{P(T,\mu_B) - P(T,0)}{T^4} = rac{\chi_2^B}{2} \left(rac{\mu_B}{T}
ight)^2 \left(1 + rac{1}{12}rac{\chi_4^B}{\chi_2^B} \left(rac{\mu_B}{T}
ight)^2
ight)$$

$$rac{M_B}{\sigma_B^2} = rac{\mu_B}{T} + \mathcal{O}(\mu_B^3)$$

$$egin{aligned} rac{M_B}{\sigma_B^2} &= rac{\mu_B}{T} + \mathcal{O}(\mu_B^3) \ S_B \sigma_B &= rac{\mu_B}{T} rac{\chi_4^B}{\chi_2^B} + \mathcal{O}(\mu_B^3) \end{aligned}$$

no need for talking about a chemical potential

$$S_B\sigma_B=rac{M_B}{\sigma_B^2}rac{\chi_4^B}{\chi_2^B}+\mathcal{O}(\mu_B^3)$$

Conserved charge fluctuations and freeze-out mean, variance, skewness and kurtosis

