dubna

Composite particles in medium - effects of substructure

Simon Liebing ${ }^{*}$ and David Blaschke ${ }^{\ddagger \ddagger+}$

Abstract

The role of phase space occupation effects for the formation of two- and three-particle bound states in a dense medium is investigated within an algebraic approach suitable for systems with short-range interactions. While for two-fermion bound states due to Pauli blocking in a dense medium the binding energy is reduced and vanishes at a critical density (Mott effect), for three-fermion bound states it is shown that within a Faddeev approach the Bose enhancement of fermion pairs can partially compensate the Pauli blocking between the fermions. Therefore, three-fermion bound states in a medium can exist as Borromean states beyond the Mott density of the two-fermion bound state.

The Lipkin Model for Composite Bosons

Introduction of composite boson operators (deuterons as nucleon pairs [1])

$$
\begin{align*}
<R, r \mid D, 2 K> & =e^{2 i K R} \phi(r)=\sum_{q} g_{q} e^{i(K+q) r_{1}} e^{i(K-q) r_{2}} \tag{1}\\
D_{2 K}^{\dagger} & =\sum_{q} g_{q} a_{(K+q) \uparrow}^{\dagger} a_{(K-q) \downarrow}^{\dagger} D_{2 K^{\prime}}=\sum_{q} g_{q} a_{\left(K^{\prime}-q\right) \downarrow} a_{\left(K^{\prime}+q\right) \uparrow} \tag{2}
\end{align*}
$$

$\left[D_{2 K^{\prime}}, D_{2 K}^{\dagger}\right]=\delta_{K K^{\prime}}-\Delta_{K K^{\prime}}$
$\Delta_{K K^{\prime}}=\sum_{q} g_{q}\left\{g_{\left(K^{\prime}-K+q\right)} a_{\left(2 K-K^{\prime}-q\right) \downarrow}^{\dagger} a_{\left(K^{\prime}-q\right) \downarrow}+g_{\left(K^{\prime}-K-q\right)} a_{\left(2 K-K^{\prime}+q\right) \uparrow}^{\dagger} a_{\left(K^{\prime}+q\right) \uparrow}\right\}$
$\Delta_{K K}=\sum g_{K-q}^{2} n_{q \downarrow}+g_{q-K}^{2} n_{q \uparrow}$
$\Delta_{K K}=\sum_{q} g_{K-q}^{2} n_{q \downarrow}+g_{q-K}^{2} n_{q \uparrow}$

m Deuteron State

The interaction could be developed within the quasi-spin formalism. That allows the calculation of multi particle states. Now it is only a small step to calculate the result of $V=-\epsilon_{D} D_{2 K} D_{2 K}^{\dagger}$, acting on the m - deuteron state

$$
\begin{align*}
V\left(D_{2 K}^{\dagger}\right)^{m}|0\rangle & =-\left(\epsilon_{D} / \Omega\right)\left(\frac{\Omega}{2}\left(\frac{\Omega}{2}+1\right)-\left(\frac{2 m-\Omega}{2}\right)^{2}+\frac{2 m-\Omega}{2}\right)\left(D_{2 K}^{\dagger}\right)^{m}|0\rangle \tag{5}\\
& =-m \epsilon_{D}\left(1-\frac{m-1}{\Omega}\right)\left(D_{2 K}^{\dagger}\right)^{m}|0\rangle \tag{6}
\end{align*}
$$

Interaction energy in relation to the particle number

Composite Baryon Model

Baryon composed by fermionic $\left(a^{\dagger}\right)$ and bosonic $\left(b^{\dagger}\right)$ creation operators for quarks and diquarks, resp.

$$
\begin{align*}
N_{K}^{\dagger} & =\sum_{q} g_{q} a_{\frac{K}{2}+q}^{\dagger} b_{\frac{K}{2}-q}^{\dagger}, \quad N_{K}=\sum_{q} g_{q} b_{\frac{K}{2}-q} a_{\frac{K}{2}+q} \tag{7}\\
{\left[N_{K^{\prime}}, N_{K}^{\dagger}\right] } & =\delta_{K, K^{\prime}}+\Delta_{K, K^{\prime}} \tag{8}\\
\Delta_{K, K^{\prime}} & =\sum_{q} g_{q}\left(g_{\frac{K-K^{\prime}}{2}-q} b_{K-\frac{K^{\prime}}{2}-q}^{\dagger} b_{\frac{K^{\prime}}{2}-q}-g_{\frac{K-K^{\prime}}{2}+q} a_{K-\frac{K^{\prime}}{2}+q}^{\dagger} a_{\frac{K^{\prime}}{2}+q}\right) \tag{9}
\end{align*}
$$

The next step is to calculate multi particle states. It is possible to write down quasi spin operators like in the case of bosons, see Blaizot [2]. Phase space occupation factors as in PNJL model [3] show partial compensation of Pauli blocking and Bose enhancement -> baryon bound even when diquarks unbound (borromean state).

Acknowledgment

This work was supported by the Helmholtz Association via "HISS Dubna" programme, by the Polish NCN under grant UMO-2011/02/A/ST2/00306, and by COST Action MP1304 "NewCompStar". S.L. thanks the Bogoliubov Laboratory for Theoretical Physics at JINR Dubna and University of Wroclaw for hospitality during several collaboration visits.

N-particle T-matrix in ladder approximation
 $$
\begin{equation*} T_{N}=V_{N} G_{N}^{0} T_{N}=\frac{V_{N}}{1-V_{N} G_{N}} \tag{10} \end{equation*}
$$
 two-particle propagator
 $$
\begin{equation*} G_{2}^{0}\left(\Omega, e_{1}, e_{2}\right)=\sum_{\omega_{1}} \frac{1}{\omega_{1}-e_{1}} \frac{1}{\Omega-\omega_{1}-e_{2}}=\frac{\left(1-f_{1}\right)\left(1-f_{2}\right)-f_{1} f_{2}}{\Omega-e_{1}-e_{2}} \tag{11} \end{equation*}
$$
 three-particle propagator
 $$
\begin{equation*} G_{3}^{0}\left(\Omega, e_{1}, e_{2}, e_{3}\right)=\sum_{\omega_{1} \omega_{2}} \frac{1}{\omega_{1}-e_{1}} \frac{1}{\omega_{2}-e_{2}} \frac{1}{\Omega-\omega_{1}-\omega_{2}-e_{3}}=\frac{\left(1-f_{1}\right)\left(1-f_{2}\right)\left(1-f_{3}\right)+f_{1} f_{2} f_{3}}{\Omega-e_{1}-e_{2}-e_{3}} \tag{12} \end{equation*}
$$

Evaluation of the numerator in G_{2}^{0} for $f=1 / 2$ lead to zero. In case of G_{3}^{0} one could discuss the influence of the pairing terms.

$$
\begin{align*}
& Q_{2}^{\text {ladder }}=1-f_{1}-f_{2} \tag{13}\\
& Q_{2}^{\text {brueckner }}=\left(1-f_{1}\right)\left(1-f_{2}\right)=1-f_{1}-f_{2}+f_{1} f_{2} \tag{14}\\
& Q_{3}^{\text {linear approx }}=1-f_{1}-f_{2}-f_{3} \tag{15}\\
& Q_{3}^{\text {ladder }}=1-f_{1}-f_{2}-f_{3}+f_{1} f_{2}+f_{2} f_{3}+f_{1} f_{3} \tag{16}\\
& Q_{3}^{\text {fermi-bose }}=\frac{1}{3}\left(1-f_{1}+g_{23}\right)+\frac{1}{3}\left(1-f_{2}+g_{13}\right)+\frac{1}{3}\left(1-f_{3}+g_{23}\right) \tag{17}\\
& \begin{array}{cccccccl}
\hline f_{i} & g_{i j} & \mathrm{Q}_{2}^{\text {ladder }} & \mathrm{Q}_{2}^{\text {brueckner }} & Q_{3}^{\text {linear approx. }} & \mathrm{Q}_{3}^{\text {ladder }} & \mathrm{Q}_{3}^{\text {fermi-bose }} \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & \\
0.5 & 0 & 0 & 0.25 & -0.5 & 0.25 & 1.5 & \text { borromean } \\
0.5 & 0.5 & 0 & 0.25 & -0.5 & 0.25 & 2.25 & \text { borromean }
\end{array}
\end{align*}
$$

This is consistent with the introduction of 3 particle momenta and the numerical evaluation of the Pauli blocking operators
${ }^{p_{0}}(a)$

Fig. 2: Comparison of the different Pauli blocking operators $Q_{3}^{\text {linear approx }}, Q_{3}^{\text {ladder }}$ and $Q_{3}^{\text {fermi-bose }}$ were one gets a similar distribution for $Q_{3}^{\text {linear approx. }}$ and $Q_{3}^{\text {ladder }}$. Nevertheless there is a fundamental difference because values and especially the sign changes. In case of $Q_{3}^{\text {fermi-bose-pair }}$ one can see the region, were bosons form a condensate.

- Including ladder term changes sign
- Borromean three particle bound state possible while two particle state unbound.

Summary

- two-fermion bound states: Pauli blocking leads to Mott dissosiation - three-fermion (or fermion-boson) bound states can be stable while no two-fermion bound state possible under same conditions
- nucleon as in-medium Borromean state \rightarrow quarkyonic phase

References

[1] Lipkin, Harry J. "Quantum Mechanics." The Weizmann Institute, Rehovot (1973) [2] Blaizot, Jean-Paul, and Ripka, Georges "Quantum Theory of Finite Systems."
[3] Blanqier, Eric, J. Phys. G 38 (2011) 105003

