

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG

The University of Resources. Since 1765.

(10)

Composite particles in medium - effects of substructure

Simon Liebing^{*} and David Blaschke^{†‡+}

Abstract

The role of phase space occupation effects for the formation of two- and three-particle bound states in a dense medium is investigated within an algebraic approach suitable for systems with short-range interactions. While for two-fermion bound states due to Pauli blocking in a dense medium the binding energy is reduced and vanishes at a critical density (Mott effect), for three-fermion bound states it is shown that within a Faddeev approach the Bose enhancement of fermion pairs can partially compensate the Pauli blocking between the fermions. Therefore, three-fermion bound states in a medium can exist as Borromean states beyond the Mott density of the two-fermion bound state.

The Lipkin Model for Composite Bosons

N-particle T-matrix in ladder approximation

Introduction of composite boson operators (deuterons as nucleon pairs [1])

$$< R, r | D, 2K > = e^{2iKR} \phi(r) = \sum_{q} g_{q} e^{i(K+q)r_{1}} e^{i(K-q)r_{2}}$$

$$D^{\dagger}_{q} = \sum_{q} a_{q} a^{\dagger}_{q} = D_{2K} - \sum_{q} a_{q} a_{(K+q)r_{1}} + Q_{(K+q)r_{2}}$$
(1)

$$D_{2K}^{\dagger} = \sum_{q} g_q \ a_{(K+q)\uparrow}^{\dagger} \ a_{(K-q)\downarrow}^{\dagger}, \ D_{2K'} = \sum_{q} g_q \ a_{(K'-q)\downarrow} \ a_{(K'+q)\uparrow} \qquad (4)$$

$$\begin{bmatrix} D_{2K'}, D_{2K}^{\dagger} \end{bmatrix} = \delta_{KK'} - \Delta_{KK'}$$

$$\Delta_{KK'} = \sum_{q} g_{q} \{ g_{(K'-K+q)} a_{(2K-K'-q)\downarrow}^{\dagger} a_{(K'-q)\downarrow} + g_{(K'-K-q)} a_{(2K-K'+q)\uparrow}^{\dagger} a_{(K'+q)\uparrow} \}$$

$$\Delta_{KK} = \sum_{q} g_{K-q}^{2} n_{q\downarrow} + g_{q-K}^{2} n_{q\uparrow}$$
(3)
(3)
(4)

m Deuteron State

The interaction could be developed within the quasi-spin formalism. That allows the calculation of multi particle states. Now it is only a small step to calculate the result of $V = -\epsilon_D D_{2K} D_{2K}^{\dagger}$, acting on the *m*- deuteron state

$$V\left(D_{2K}^{\dagger}\right)^{m}|0\rangle = -\left(\epsilon_{D}/\Omega\right)\left(\frac{\Omega}{2}\left(\frac{\Omega}{2}+1\right) - \left(\frac{2m-\Omega}{2}\right)^{2} + \frac{2m-\Omega}{2}\right)\left(D_{2K}^{\dagger}\right)^{m}|0\rangle$$

$$= -m\epsilon_{D}\left(1 - \frac{m-1}{\Omega}\right)\left(D_{2K}^{\dagger}\right)^{m}|0\rangle$$
(6)

Interaction energy in relation to the particle number $9 \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

$$T_N = V_N G_N^0 T_N = \frac{V_N}{1 - V_N G_N}$$

two-particle propagator

$$G_2^0(\Omega, e_1, e_2) = \sum_{\omega_1} \frac{1}{\omega_1 - e_1} \frac{1}{\Omega - \omega_1 - e_2} = \frac{(1 - f_1)(1 - f_2) - f_1 f_2}{\Omega - e_1 - e_2}$$
(11)

three-particle propagator

$$G_{3}^{0}(\Omega, e_{1}, e_{2}, e_{3}) = \sum_{\omega_{1}\omega_{2}} \frac{1}{\omega_{1} - e_{1}} \frac{1}{\omega_{2} - e_{2}} \frac{1}{\Omega - \omega_{1} - \omega_{2} - e_{3}} = \frac{(1 - f_{1})(1 - f_{2})(1 - f_{3}) + f_{1}f_{2}f_{3}}{\Omega - e_{1} - e_{2} - e_{3}}$$
(12)

Evaluation of the numerator in G_2^0 for f = 1/2 lead to zero. In case of G_3^0 one could discuss the influence of the pairing terms.

$$Q_2^{ladder} = 1 - f_1 - f_2$$
 (13)

$$Q_2^{brueckner} = (1 - f_1)(1 - f_2) = 1 - f_1 - f_2 + f_1 f_2$$
(14)

$$Q_{3}^{linear\ approx} = 1 - f_{1} - f_{2} - f_{3}$$
(15)

$$Q_{3}^{fauncr} = 1 - f_{1} - f_{2} - f_{3} + f_{1}f_{2} + f_{2}f_{3} + f_{1}f_{3}$$
(16)
$$Q_{3}^{fermi-bose} = \frac{1}{3}(1 - f_{1} + g_{23}) + \frac{1}{3}(1 - f_{2} + g_{13}) + \frac{1}{3}(1 - f_{3} + g_{23})$$
(17)

Composite Baryon Model

Baryon composed by fermionic (a^{\dagger}) and bosonic (b^{\dagger}) creation operators for quarks and diquarks, resp.

$$N_{K}^{\dagger} = \sum_{q} g_{q} a_{\frac{K}{2}+q}^{\dagger} b_{\frac{K}{2}-q}^{\dagger}, \quad N_{K} = \sum_{q} g_{q} b_{\frac{K}{2}-q} a_{\frac{K}{2}+q}$$

$$[N_{K'}, N_{K}^{\dagger}] = \delta_{K,K'} + \Delta_{K,K'}$$

$$\Delta_{K,K'} = \sum_{q} g_{q} \left(g_{\frac{K-K'}{2}-q} b_{K-\frac{K'}{2}-q}^{\dagger} b_{\frac{K'}{2}-q} - g_{\frac{K-K'}{2}+q} a_{K-\frac{K'}{2}+q}^{\dagger} a_{\frac{K'}{2}+q}^{\dagger} \right)$$

$$(7)$$

$$(8)$$

$$(9)$$

$0.5 \ 0$	0	0.25	-0.5	0.25 1.5	borromean
0.5 0.5	0	0.25	-0.5	0.25 2.25	borromear

This is consistent with the introduction of 3 particle momenta and the numerical evaluation of the Pauli blocking operators

Fig. 2: Comparison of the different Pauli blocking operators $Q_3^{linear\ approx}$, Q_3^{ladder} and $Q_3^{fermi-bose}$ were one gets a similar distribution for $Q_3^{linear\ approx}$ and Q_3^{ladder} . Nevertheless there is a fundamental difference because values and especially the sign changes. In case of $Q_3^{fermi-bose-pair}$ one can see the region, were bosons form a condensate.

Including ladder term changes sign

 Borromean three particle bound state possible while two particle state unbound.

Summary

The next step is to calculate multi particle states. It is possible to write down quasi spin operators like in the case of bosons, see Blaizot [2]. Phase space occupation factors as in PNJL model [3] show partial compensation of Pauli blocking and Bose enhancement –> baryon bound even when diquarks unbound (borromean state).

Acknowledgment

This work was supported by the Helmholtz Association via "HISS Dubna" programme, by the Polish NCN under grant UMO-2011/02/A/ST2/00306, and by COST Action MP1304 "NewCompStar". S.L. thanks the Bogoliubov Laboratory for Theoretical Physics at JINR Dubna and University of Wroclaw for hospitality during several collaboration visits. two-fermion bound states: Pauli blocking leads to Mott dissosiation
three-fermion (or fermion-boson) bound states can be stable while no two-fermion bound state possible under same conditions
nucleon as in-medium Borromean state → quarkyonic phase

References

[1] Lipkin, Harry J. "Quantum Mechanics." The Weizmann Institute, Rehovot (1973)
[2] Blaizot, Jean-Paul, and Ripka, Georges "Quantum Theory of Finite Systems."
[3] Blanqier, Eric, J. Phys. G 38 (2011) 105003

*TU Bergakademie Freiberg Institute of Theoretical Physics Leipziger Strasse 23 09599 Freiberg, Germany

[†]Uniwersytet Wroclawski Instytut Fizyki Teoretycznej pl. M. Borna 9 50-204 Wroclaw, Poland [‡]Joint Institute for Nuclear Research Bogoliubov Laboratory of Theoretical (MEPhI) Physics Joliot-Curie 6 141980 Dubna , Russia

 +National Research Nuclear University Corresponding author: (MEPhI)
 Kashirskoe Highway 31
 115409 Moscow , Russia