Critical Point and Onset of Deconfinement 2016

Chiral magnetic effect and chiral kinetic theory

Shi Pu

(ITP, Goethe Uni. Frankfurt am Main)

References:

- J.H. Gao, Z.T. Liang, SP, Q. Wang, X.N. Wang, PRL 109 (2012) 232301
- J.W. Chen, SP, Q. Wang, X.N. Wang, PRL 110 (2013) 262301
- SP, S.Y. Wu, D.L. Yang, Phys.Rev. D89 (2014) 8, 085024; Phys.Rev. D91 (2015) 2, 025011
- J.W. Chen, T. Ishii, SP, N. Yamamoto, arXiv:1603.03620

Outline

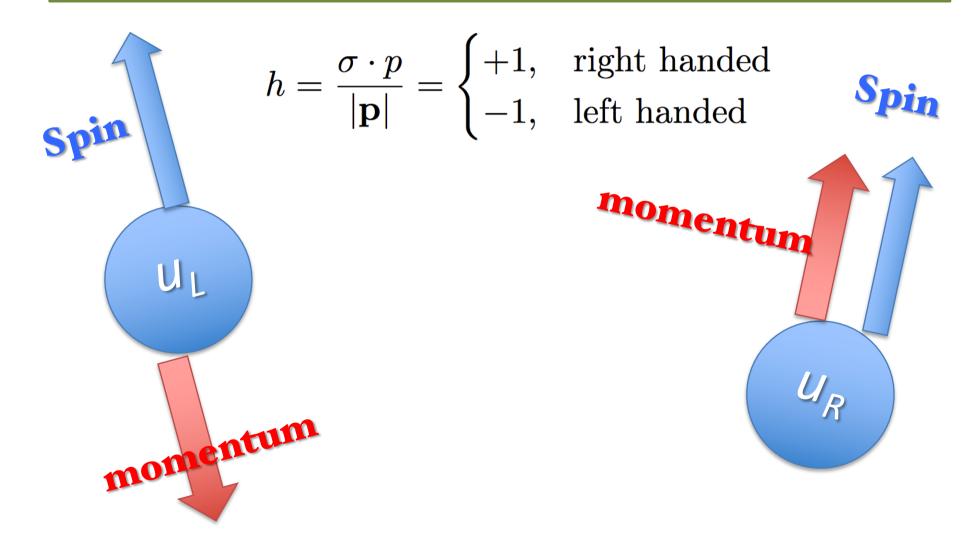
Chiral magnetic and vortical effects

Chiral kinetic theory

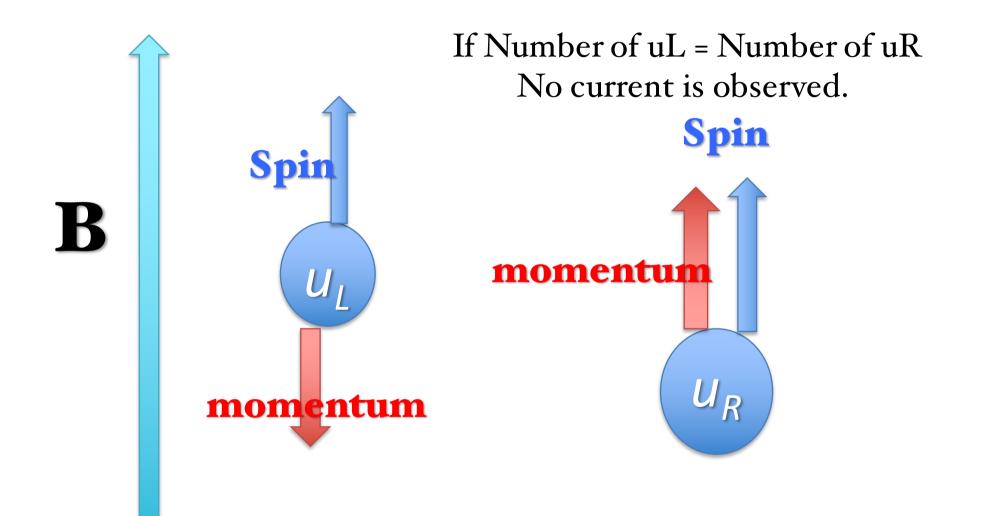
Recent progress

- Chiral Hall separation effect
- Nonlinear chiral transport phenomena
- Magneto-hydrodynamics
- Summary

Chirality of massless fermions

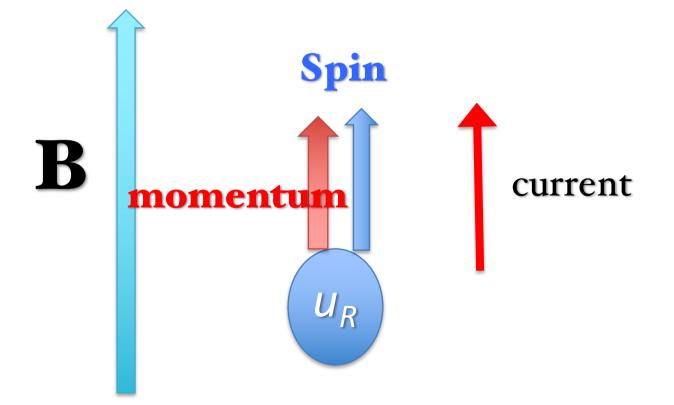


Chirality

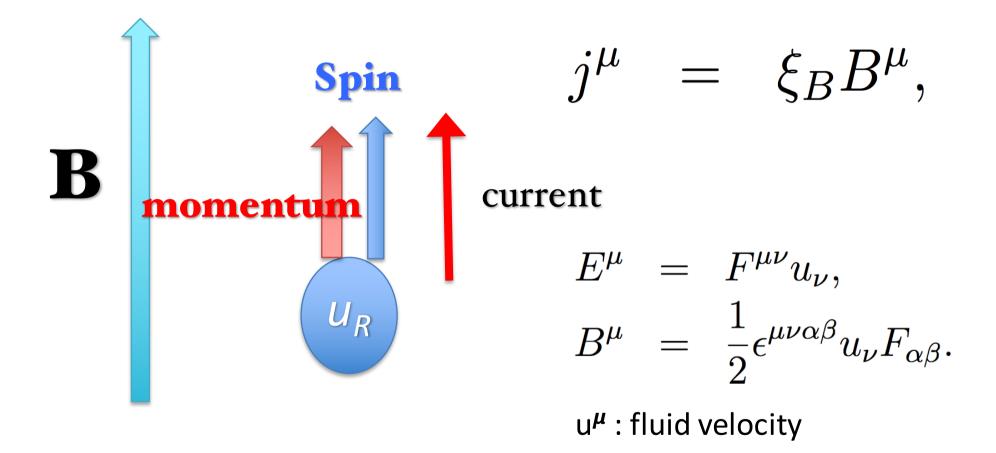


Chiral Magnetic Effect

If Number of uL ≠ Number of uR A electric current will be observed.

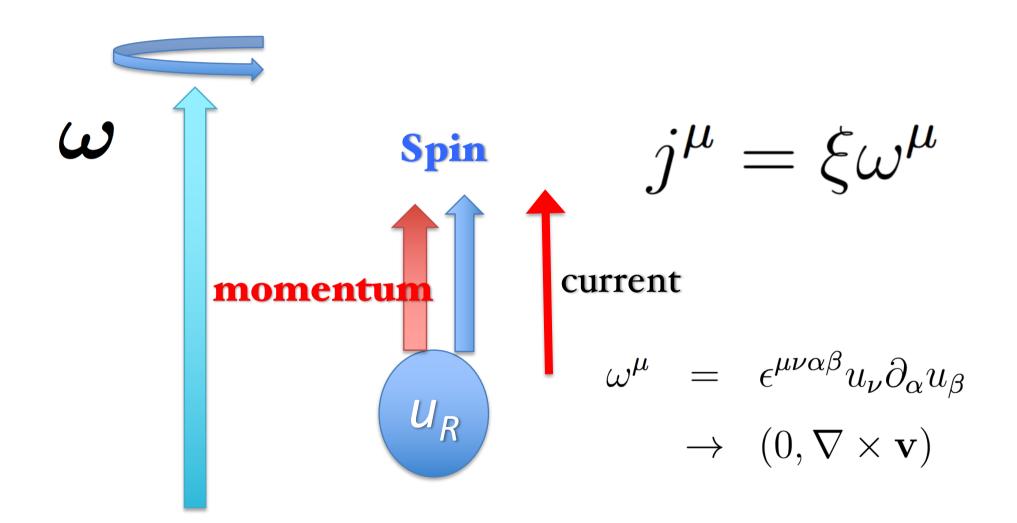


Chiral Magnetic Effect (CME)

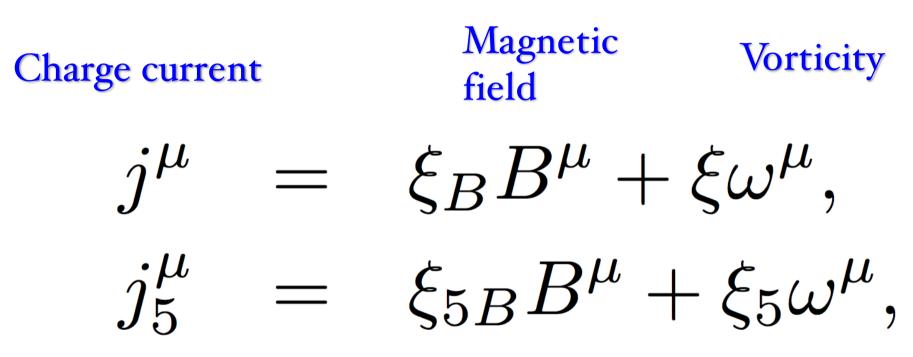


D.E. Kharzeev, L.D. McLerran, H.J. Warringa, NPA 803, 227 K. Fukushima, D. E. Kharzeev, H. J. Warringa, PRD78, 074033

Chiral Vortical Effect (CVE)



Chiral Magnetic and Vortical Effect



Chiral current

New Transport coefficients

$$j^{\mu} = \xi_B B^{\mu} + \xi \omega^{\mu},$$

$$j^{\mu}_5 = \xi_{5B} B^{\mu} + \xi_5 \omega^{\mu},$$

- Weakly coupling, Kubo formula (Fukushima('08),Kharzeev('11),Landsteiner('11), Hou('12), ...)
- Strong coupling, AdS/CFT duality, (Erdmenger('09), Banerjee('11), Torabian('11), ...)

Kinetic theory

- Kinetic theory: a microscopic dynamic theory for many-body system, to compute transport coefficients.
- distribution function, e.g. Fermi-Dirac distribution f(x,p) $p + \Delta p$

$$p + \Delta p$$

 p
 x $x + \Delta x$

Boltzmann equations

- Chiral Magnetic effect (quantum effect)
 VS Semi-classical Boltzmann eq.
- We try to study these chiral phenomena by Boltzmann equations, but we failed...
- It seems that one has to modify the Boltzmann equations.

SP, J.H. Gao, Q. Wang, Phys.Rev. D83 (2011) 094017

Wigner function for fermions

 Wigner function: a quantum distribution function, ensemble average, normal ordering

Vasak, Gyulassy and Elze ('86,'87,'89)

$$W(x,p) = <: \int \frac{d^4y}{(2\pi)^4} e^{-ipy} \overline{\psi}(x + \frac{1}{2}y) \otimes \mathcal{P}U(x,y) \psi(x - \frac{1}{2}y) :>$$
Gauge link

$$\overline{\psi}(x+rac{1}{2}y)$$
 X $\psi(x-rac{1}{2}y)$

Macroscopic quantities

Charge current

$$j^{\mu}(x) \equiv \langle :\overline{\psi}(x)\gamma^{\mu}\psi(x):\rangle = \int d^4p \operatorname{Tr} (\gamma^{\mu}W),$$

Chiral current

$$\begin{aligned} j_5^{\mu}(x) &= \lim_{\epsilon \to 0} <: \overline{\psi}(x + \frac{1}{2}\epsilon)\gamma^5 \gamma^{\mu} e^{i\int_{x-\epsilon/2}^{x+\epsilon/2} dz \cdot A(z)} \psi(x - \frac{1}{2}\epsilon) :> \\ &= \int d^4 p \text{Tr} \left(\gamma^{\mu} \gamma^5 W\right) \end{aligned}$$

Master equation from Dirac Eq.

• Massless, constant external electromagnetic fields $F_{ext}^{\mu\nu}$, neglecting particles' interactions

$$[\gamma^{\mu}p_{\mu} + \frac{1}{2}i \ \gamma^{\mu}(\partial^{x}_{\mu} - QF^{ext}_{\mu\nu}\partial^{p}_{\mu})]W = 0,$$

Vasak, Gyulassy and Elze ('86,'87,'89)

• First order differential equation, solve it order by order

Solve the Master equation

- Gradient expansion to Winger function W and its master equation,
 - expand all quantities at the power of derivatives $O(\partial_x^1), O(\partial_x^2),$
 - external fields are weak $F^{\mu\nu} \sim \partial_x^{\mu} A^{\nu} \sim O(\partial^1)$,

Leading order

Oth order, non-interacting ideal gas

 classical Fermi-Dirac distribution

- input parameters:
 - finite temperature T,
 - chemical potential $\mu = \mu_R + \mu_L$,
 - chiral chemical potential $\mu_5 = \mu_R \mu_L$

1st order, Chiral anomaly

 It is remarkable that we obtain the chiral anomaly by Wigner function!

Chiral magnetic and vortical effect

,

$$j^{\mu} = \xi_B B^{\mu} + \xi \omega^{\mu},$$

$$j^{\mu}_5 = \xi_{5B} B^{\mu} + \xi_5 \omega^{\mu},$$

$$\xi = \frac{1}{\pi^2} \mu \mu_5,$$

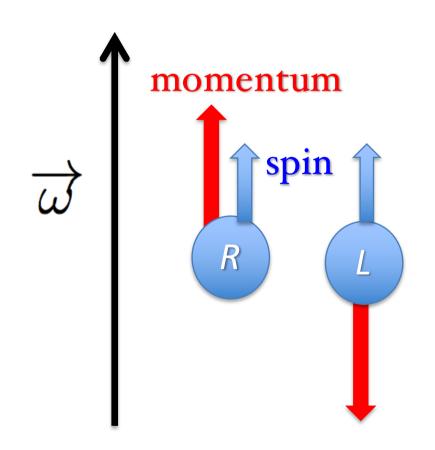
$$\xi_B = \frac{Q}{2\pi^2} \mu_5,$$

$$\xi_5 = \frac{1}{6} T^2 + \frac{1}{2\pi^2} \left(\mu^2 + \mu_5^2 \right)$$

$$\xi_{B5} = \frac{Q}{2\pi^2} \mu.$$

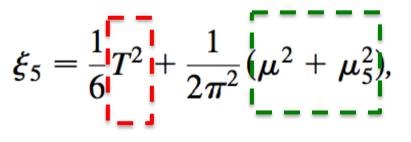
T: temperature Chemical potentials $\mu = \mu_R + \mu_L,$ $\mu_5 = \mu_R - \mu_L,$

Spin Local Polarization Effect



Chiral current

$$j_5^{\mu} \equiv j_R^{\mu} - j_L^{\mu} = \xi_5 \omega^{\mu},$$



Can be observed in both high/low energy collisions

What can we learn from these results?

3-dimensional Chiral kinetic equation

• Integral over p0 and in local rest frame, we obtain the kinetic theory for chiral fermions.

$$\begin{split} \frac{dt}{d\tau} \partial_t f_{R/L} &+ \frac{d\mathbf{x}}{d\tau} \cdot \nabla_{\mathbf{x}} f_{R/L} + \frac{d\mathbf{p}}{d\tau} \cdot \nabla_{\mathbf{p}} f_{R/L} = 0, \\ \frac{dt}{d\tau} &= 1 \pm Q \mathbf{\Omega} \cdot \mathbf{B} \pm 4 |\mathbf{p}| (\mathbf{\Omega} \cdot \boldsymbol{\omega}), \\ \text{velocity} \quad \frac{d\mathbf{x}}{d\tau} &= \hat{\mathbf{p}} \pm Q (\hat{\mathbf{p}} \cdot \mathbf{\Omega}) \mathbf{B} \pm Q (\mathbf{E} \times \mathbf{\Omega}) \pm \frac{1}{|\mathbf{p}|} \boldsymbol{\omega}, \\ \text{force} \quad \frac{d\mathbf{p}}{d\tau} &= Q (\mathbf{E} + \hat{\mathbf{p}} \times \mathbf{B}) \pm Q^2 (\mathbf{E} \cdot \mathbf{B}) \mathbf{\Omega} \\ &= \tau Q |\mathbf{p}| (\mathbf{E} \cdot \boldsymbol{\omega}) \mathbf{\Omega} \pm 3Q (\mathbf{\Omega} \cdot \boldsymbol{\omega}) (\mathbf{p} \cdot \mathbf{E}) \hat{\mathbf{p}}, \end{split}$$

21

3-dimensional Chiral kinetic equation

Neglect all terms proportional to Ω, it becomes the standard Boltzmann eq.

$$\begin{split} \frac{dt}{d\tau} \partial_t f_{R/L} &+ \frac{d\mathbf{x}}{d\tau} \cdot \nabla_{\mathbf{x}} f_{R/L} + \frac{d\mathbf{p}}{d\tau} \cdot \nabla_{\mathbf{p}} f_{R/L} = 0, \\ \frac{dt}{d\tau} &= 1 & \mathbf{f}_{\mathsf{R/L}}: \text{distribution} \\ \mathbf{velocity} \quad \frac{d\mathbf{x}}{d\tau} &= \hat{\mathbf{p}} & \text{or left handed fermions} \\ \mathbf{force} \quad \frac{d\mathbf{p}}{d\tau} &= Q(\mathbf{E} + \hat{\mathbf{p}} \times \mathbf{B}) \end{split}$$

Berry Phase (1)

- Firstly, let us consider an **adiabatic** process. At each time, the system is at its eigenstate e.g. U.
- Secondly, we assume the Hamiltonian is time dependent H=H(t). So do those eigenstates U=U(t),
 i.e. U(t+Δt)=U(t)+ Δ t Δ U.
- Finally, the system goes to its **initial eigenstate**. Then there is an additional **phase factor** to the wave function. It is **Berry phase**.
- Analogy to moving a vector in a curved space.

Berry Phase (2)

 Let us consider the Hamitonlian of Weyl fermions in momentum space.

$$H = i\sigma \cdot \nabla \to \sigma \cdot \mathbf{p}, \qquad HU(p) = EU(p),$$
$$U(t + \Delta t) = U(t) + i\Delta t \frac{d\mathbf{p}}{dt} \cdot \mathbf{a}_p, \qquad \mathbf{a}_p = -iU(t)\nabla_{\mathbf{p}}U(t),$$

• If the system goes back to its initial eigenstate, then phase factor is **independent** on the **path**. So, it is **physical**!

Stokes's
theorem
$$\begin{split} \Psi(p) &= \exp\left(i\oint_{C}d\mathbf{p}\cdot\mathbf{a}_{p}\right)U(p) \\ &= \exp\left(i\iint d\mathbf{S}\cdot\Omega_{p}\right)U(p) \quad \Omega_{p} = \nabla_{p}\times\mathbf{a}_{p}, \end{split}$$

D. Xiao, M.C. Chang, Q. Niu, Rev. Mod. Phys. 82.1959

Berry Phase (3)

- In the **absence** of external fields, the Berry phase is **decoupled** to the dynamics.
- In the **presence** of electromagnetic fields,

3-dimensional Chiral kinetic equation

We used Wigner function to obtain the chiral kinetic equation with Berry phase.

$$\begin{split} \frac{dt}{d\tau} \partial_t f_{R/L} &+ \frac{d\mathbf{x}}{d\tau} \cdot \nabla_{\mathbf{x}} f_{R/L} + \frac{d\mathbf{p}}{d\tau} \cdot \nabla_{\mathbf{p}} f_{R/L} = 0, \\ \frac{dt}{d\tau} &= 1 \pm Q \mathbf{\Omega} \cdot \mathbf{B} \pm 4 |\mathbf{p}| (\mathbf{\Omega} \cdot \boldsymbol{\omega}), \\ \text{velocity} \quad \frac{d\mathbf{x}}{d\tau} &= \hat{\mathbf{p}} \pm Q (\hat{\mathbf{p}} \cdot \mathbf{\Omega}) \mathbf{B} \pm Q (\mathbf{E} \times \mathbf{\Omega}) \pm \frac{1}{|\mathbf{p}|} \boldsymbol{\omega}, \\ \text{force} \quad \frac{d\mathbf{p}}{d\tau} &= Q (\mathbf{E} + \hat{\mathbf{p}} \times \mathbf{B}) \pm Q^2 (\mathbf{E} \cdot \mathbf{B}) \mathbf{\Omega} \\ &= \mp Q |\mathbf{p}| (\mathbf{E} \cdot \boldsymbol{\omega}) \mathbf{\Omega} \pm 3Q (\mathbf{\Omega} \cdot \boldsymbol{\omega}) (\mathbf{p} \cdot \mathbf{E}) \hat{\mathbf{p}}, \end{split}$$

Recent progress

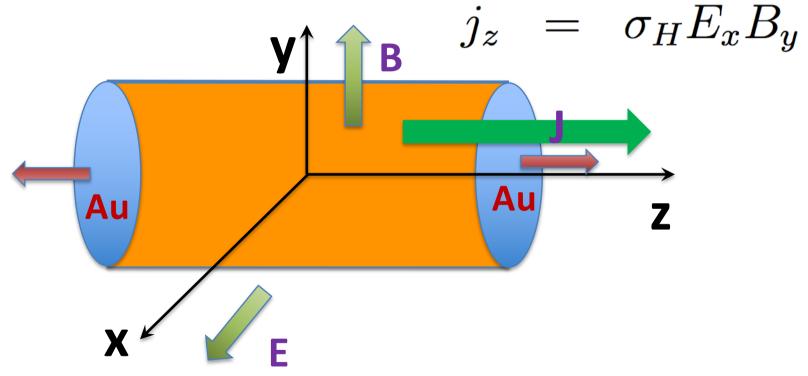
• Chiral Hall separation effect

• Nonlinear chiral transport phenomena

• Magneto-hydrodynamics

Chiral Hall separation effect

• Assuming $E \perp B$, according to Hall effect:



Charge and chirality separation in longitudinal direction
 SP, S.Y. Wu, D.L. Yang, PRD 91 (2015) 2, 025011

Nonlinear Chiral transport effects

- An inhomogeneous chiral system
- In a large chemical potential limit
- chiral kinetic theory + relaxation time approaches

$$\mathbf{j}_{e} = \sigma_{E} \mathbf{E} + \sigma_{E\mu_{5}} \nabla \mu_{5} \times \mathbf{E}_{5}$$

$$(\mu^2+\mu_5^2)rac{\sigma_{E\mu_5}}{\sigma_E} = rac{\hbar c}{2}$$
 Independent on the interactions

J.W. Chen, T. Ishii, SP, N. Yamamoto, arXiv:1603.03620

Anomalous Magneto-hydrodynamics

• Magneto-hydrodynamics:

- Relativistic hydrodynamics + Maxwell's eq.

• Anomalous:

 Chiral magnetic effect + other chiral transport effects

Magneto-hydrodynamics

- 1D Bjorken + ideal Magneto-hydrodynamics:
 - analytic solution

V. Roy, SP, L. Rezzolla, D.H. Rischke, PLB 750 (2015) 45-52

with Magnetization effects

SP, V. Roy, L. Rezzolla, D.H. Rischke, PRD 93 (2016), 074022

- 2+1 D Bjorken + ideal Magneto-hydrodynamics
 - analytic solution:
 - SP, D.L Yang, PRD93 (2016), 054042
 - Simulations:

V. Roy, SP, L. Rezzolla, D.H. Rischke, in preparation

Summary

- We obtain the chiral magnetic and vortical effect, chiral anomaly by Wigner function.
- We derive the chiral kinetic equation (modified Boltzmann equation) related to Berry phase.
- We also made some progresses in
 - Chiral Hall separation effect,
 - nonlinear chiral transport effect
 - magneto-hydrodynamics.

Thank you!

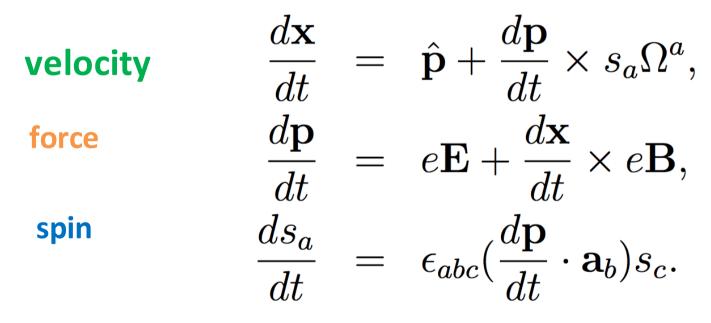
Anomalous fluid dynamics

- We do not have those chiral transport terms in a normal fluid.
- Son and Suro wka ('09) pointed out these terms are crucial to cancel the production of negative entropy in an anomalous fluid.

$$\begin{split} \partial_{\mu}T^{\mu\nu} &= QF^{\nu\rho}j_{\rho}, \\ \partial_{\mu}j^{\mu} &= 0, \end{split} \qquad \begin{aligned} \partial_{\mu}j^{\mu}_{5} &= -\frac{Q^{2}}{2\pi^{2}}E_{\rho}B^{\rho}, \end{split}$$

Non-abelian Berry Phase

• For massive fermions, a particle can change its spin. In classical limit, we get,



J.W. Chen, J.Y. Pang, SP, Q. Wang, PRD89 (2014), 094003