The Mar(e)k of QGP: Strangeness and Entropy

Jan Rafelski

Department of Physics, University of Arizona, Tucson, AZ CPOD, WROCLAW, June 2, 2016

Presented in celebration of Marek Gaździcki contributions to the study of quark-gluon plasma phase of matter, and its strangeness and entropy signature, on occasion of his 60th birthday.

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

1964/65: Two new fundamental ideas

- ► Quarks → Standard Model of Particle Physics
- ► Hagedorn Temperature → New State of Elementary Matter

Merging in 1979/80 into Quark-Gluon Plasma

Topics today:

- 1. From Hagedorn temperature to heavy ion collisions
- 2. Strangeness and how Marek found his destiny
- 3. Cooking plasma and the horn

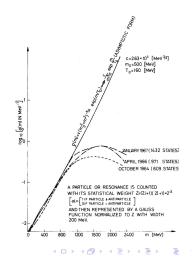
Hagedorn exponential mass spectrum: boundary of a new phase of matter

CERN LIBRARIES, GENEVA

CM-P00057114

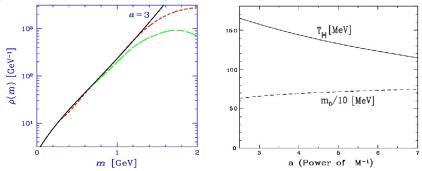
65/166/5 = TH. 520 25 January 1965

STATISTICAL THERNODYNAMICS OF STRONG INTERACTIONS AT HIGH EMERGIES


R. Hagedorn CERN - Geneve

ABSTRACT

In this statistical-thereodynamical approach to strong intersoftman at high energies it is annual that higher and higher remomone of strongly interesting particles occur and has part in a strongly interesting particles occur and has part in the highest and thereodynamics. Expressed in a alogant "We describe by themodynamics fork-shalls which consist of first-shalls, which consists of first-shalls, which consist of first-shalls, which consists of first-shalls, which consists of shall-consistency requires called "approximation the strong shalls and the strong strong fallewing from this requirement has only a solution if the mass spectrum grow exponentially:


$$\rho(n) \xrightarrow{\pi \to \infty} const. \pi^{-5/2} exp(\frac{\pi}{T_0}).$$

 τ_{0}^{-} is a remarkable quantity: the pertition function corresponding to the above ρ_{1} (a diverges for $\gamma \rightarrow \tau_{0}^{-}$, τ_{0}^{-} is therefore the highest possible temperature for strong interscitions. It should - trabulations in all high energy collisions of hadrons (including each frame the sequence), as four (0<20, γ (set 0<20), the set of 10^{-2} Collision of the value of τ_{0}^{-} constants of the set of the s

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

Experimental mass spectrum defines T_H

To fix $T_{\rm H}$ in a limited range of mass need prescribe value of *a* obtained from SBM. In 1978 we noted that at $T_{\rm H}$ sound velocity vanishes. This creates another way of fixing $T_{\rm H}$ both in experiment and in lattice QCD and when this is done, the critical power *a* is also determined.

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

Hagedorn Temperature *T*_H Singular point of partition function

$$Z_{1}(\beta, V) = \int \frac{2V_{\mu}^{ex}p^{\mu}}{(2\pi)^{3}} \tau(p^{2}) e^{-\beta_{\mu}p^{\mu}} d^{4}p$$

Inserting $1 = \int \delta_{0}(m^{2} - p^{2}) dm^{2}$

I replacing $\tau(m^2) dm^2$ by $\rho(m) dm^2$

$$\begin{split} &Z_1(\beta,V) = \frac{V^{\alpha}T}{2\pi^2} \int m^2 \rho(m) K_2(m\beta) \, dm \, . \\ &Z_1(\beta,V) \mathop{T \to } _{T \to T_0} C \int_M^m m^{3/2-a} \mathrm{e}^{-(\beta-\beta_0)m} \mathrm{d}m + C \, . \\ &Z_1(\beta,V) \mathop{T \to } _{T \to T_0} \begin{cases} C + C \Delta T^{a-5/2} \, , & a \neq 5/2 \\ C - \ln \frac{\Delta T}{T_0} \, , & a = 5/2 \end{cases} \end{split}$$

а	Р	п	£	$\delta \epsilon / \epsilon$	$C_V = \mathrm{d} \varepsilon / \mathrm{d} T$
1/2	$C/\Delta T^2$	$C/\Delta T^2$	$C/\Delta T^3$	$C + C\Delta T$	$C/\Delta T^4$
1	$C/\Delta T^{3/2}$	$C/\Delta T^{3/2}$	$C/\Delta T^{5/2}$	$C + C\Delta T^{3/4}$	$C/\Delta T^{7/2}$
3/2	$C/\Delta T$	$C/\Delta T$	$C/\Delta T^2$	$C + C\Delta T^{1/2}$	$C/\Delta T^3$
2	$C/\Delta T^{1/2}$	$C/\Delta T^{1/2}$	$C/\Delta T^{3/2}$	$C + C\Delta T^{1/4}$	$C/\Delta T^{5/2}$
5/2	$C\ln(T_0/\Delta T)$	$C\ln(T_0/\Delta T)$	$C/\Delta T$	С	$C/\Delta T^2$
3	$P_0 - C\Delta T^{1/2}$	$n_0 - C \Delta T^{1/2}$	$C/\Delta T^{1/2}$	$C/\Delta T^{1/4}$	$C/\Delta T^{3/2}$
7/2	$P_0 - C\Delta T$	$n_0 - C\Delta T$	£0	$C/\Delta T^{1/2}$	$C/\Delta T$
4	$P_0 - C\Delta T^{3/2}$	$n_0 - C\Delta T^{3/2}$	$\varepsilon_0 - C\Delta T^{1/2}$	$C/\Delta T^{-3/4}$	$C/\Delta T^{1/2}$

energy density diverges for a < 7/2. Thus only for a < 7/2 can we expect T_0 a maximum temperature.

From J.R. and R. Hagedorn: Thermodynamics of Hot Nuclear Matter in the Statistical Bootstrap Model 1979, <u>in memorial volume</u>.

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

Melting Hadrons, Boiling Quarks: From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN. With a **Tribute to Rolf Hagedorn**

Bv Johann Rafelski (ed.) Springer

The statistical bootstrap model (SBM), the exponential rise of the hadron spectrum, and the existence of a limiting temperature as the ultimate indicator for the end of ordinary hadron physics, will always be associated with the name of Rolf Hagedorn. He showed that hadron physics contains its own limit. and we know today that this limit signals quark deconfinement and the start of a new regime of strong-interaction physics.

This book is edited by Johann Rafelski. who was a long-time collaborator with Hagedorn and took part in many of the early conceptual developments of the SBM. It may perhaps be best characterised by pointing out what it is not. It is not a collection of review articles on the physics of the SBM and related topics, which could be given to newcomers as an introduction to the field. It is not a collection of reprints

Melting Hadrons,

Boiling Quarks

From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN

With a Tribute to Rolf Haaedorn

D Springer Open

CEBN Courier June 2016 relativistic heavy-ion programme at CERN that took place in the early 1980s. It starts with his thoughts about a possible programme of this kind, presented at the workshop on future relativistic heavy-ion experiments, held at the Gesellschaft fuer Schwerionenforschung (GSI). It also includes the draft minutes of the 1982 CERN SPC meeting, and some early works on strangeness production as an indicator for quark-gluon plasma formation, as put forward after many years by Rafelski.

The book is undoubtedly an ideal companion to all those who wish to recall the birth of one of the main areas of today's concepts in high-energy physics, and it is definitely a well-deserved credit to one of the great pioneers in their development. Frithiof Karsch, Biolofold University, Germany.

Bookshelf

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

Cooking plasma and the horn

First strangeness signature 1980: ratio of \bar{s}/\bar{q} in $\bar{\Lambda}/\bar{p}$ triggers Marek's strange interest!

What we intend to show is that there are many more \overline{s} quarks than antiquarks of each light flavour. Indeed:

 $\frac{\overline{s}}{\overline{q}} = \frac{1}{2} \left(\frac{m}{\tau} \right)^2 K_2 \left(\frac{m}{\tau} \right) e^{\frac{\mu}{3\tau}}$

The function $x^2 \pi^2(x)$ is, for example, tabulated in Ref. 15). For $x = \pi_g/T$ between 1.5 and 2, it varies between 1.3 and 1. Thus, we almost always have more 3 than \bar{q} quarks and, in many cases of interost, $\bar{s}/\bar{q} - 5$. As $y \to 0$ there are about as many \bar{L} and \bar{q} quarks as there are 3 quarks.

FROM HADRON GAS TO QUARK MATTER II

J. Rafelski

Institut für Theoretische Physik der Universität Frankfurt

We describe a quark-gluon plasma in terms of an many questions remain open. A signature of the quark-gluon phase surviving hadronization is suggested.

In Statistical mechanics of quarks and hadrons proceedings of Bielefeld,

August 24-31, 1980 / edited by Helmut Satz picked up by Marek in Dubna ...

(28)

REFERENCES

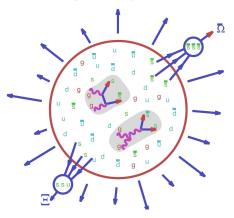
 G.Chapline et al. Phys.Rev., 1975, D8, p. 4302; R.Hagedorn. Preprint CERN, TH. 3207, Geneva, 1981.

 J.Rafelski. Preprint UFTP, 1982, 80/82 and 86/82;
M.I.Grenstein, G.M.Zinovjev. Preprint ITP-82-109E, Moscow, 1982.

- 3. J.W.Harris et al. Phys.Rev.Lett., 1981, 47, p. 229.
- 4. M.Anikina et al. JINR, P1-82-333, Dubna, 1982.
- 5. N.Akhababian et al. JINR, D1-82-445, Dubna, 1982.
- M.Anikina et al. International Conference on Nucleus-Nucleus Collisions, Michigan, 1982, (abstract); E.Okonov. JINR, D2-82-568, Dubna, 1982.
- 7. A.Abdurakhimov et al. Nucl. Phys., 1981, A362, p. 367.
- 8. M.Anikina et al. Z.Phys., 1981, C9, p. 105.

Received by Publishing Department on July, 20, 1983.

4



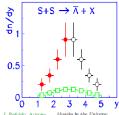
Jan Rafelski, CPOD, WROCLAW, June 2, 2016

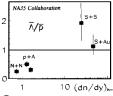
→JR 1980;1982 JR,Berndt Müller; 1986 P. Koch

Cooking strange quarks \rightarrow strange antibaryons

|▲□▶▲圖▶▲圖▶▲圖▶ | 圖|| 釣�?

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

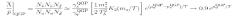

A first meeting September 1988 with RHI data

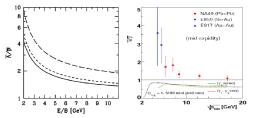


"Hadronic Matter in Collision," Tucson, September 1988 – in the picture & in this room: Marek G., Mark G., Stanislaw M., Jan R.; also: Wit B., Roy G., Walter G., Hans G., Berndt M., Emanuele Q., Chris Q.,Gena Z., and some who are in our memory: Leon VanH, Maurice J., Mike D.,

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

Joint MG+JR S+S analysis paper 1994: features $\overline{\Lambda}/\overline{p}$




Physics Letters B 366 (1996) 56–62 Fig. 3. p^{61} inclusion of secondary processes at a partonic and/or hadronic level is needed to explain the data. The string-hadronic RQMD model including secondary collisions underestimates the $\overline{\Lambda}$ production in central S+S collisions at 200 GeV per nucleon by a factor of 5 and the \overline{p} yield by a factor of 5 and the $\overline{3}$ [1].

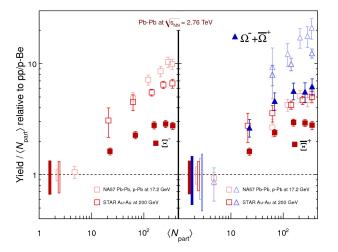
Attempts to describe the antibaryon yields within the RQMD model require the introduction of a new production mechanism beyond hadronic rescattering.

 $\overline{h}/\overline{p}$ -ratio near midrapidity in proton-proton, minimum bias proton-nucleus and central nucleus-nucleus collisions at 200 GeV per nucleon as a function of the rapidity density of negatively charged hadrons at midrapidity.

J. Rafeldzi, Arizona Quarks in the Universe December 7, 2006, MLL-München, page 11 Ratio anomaly predicted 1980, status 2006: $\overline{\Lambda}/p > 1$

Chemical freeze-out conditions in central S-S collisions at 200 A GeV

Josef Sollfrank¹, Marek Gaździcki^{2,*}, Received 5 August 1993; Johann Rafelski³ Z. Phys. C 61, 659-665 (1994)



Abstract. We determine the chemical freeze-out parameters of hadronic matter formed in central S-s collisions at 200 A GeV, analyzing data from the NA35 collaboration at CERN. In particular we study the quark (baryon unmbr) and strange quark fugacities, as well as the strange quark phase-space occupancy and the freeze-out temperature.

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

Cooking plasma and the horn

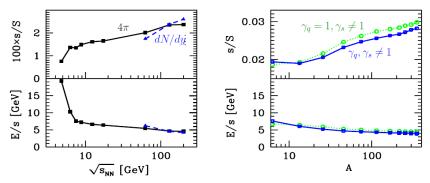
Largest medium effect: Strange antibaryons

- ▲日▼▲国▼▲国▼▲国▼ 回 うらの

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

(FERMI) STATISTICAL HADRONIZATION MODEL (SHM) Very strong interactions: equal hadron production strength irrespective of produced hadron type particle yields depending only on the available phase space

 Fermi: Micro-canonical phase space sharp energy and sharp number of particles
E. Fermi, Prog.Theor.Phys. 5 (1950) 570: HOWEVER


Experiments report event-average rapidity particle abundances, model should describe an average event

- Canonical phase space: sharp number of particles ensemble average energy *E* → *T* temperature *T* could be, but needs not to be, a kinetic process temperature
- Grand-canonical ensemble average energy and number of particles: N → μ ⇔ Υ = e^(μ/T)

Our interest in the bulk thermal properties of the source evaluated independent from complex transverse dynamics is the reason to analyze integrated spectra.

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

Fits 2003-2008 as a function of $\sqrt{s_{\rm NN}}$ and A

Interest in energy cost of strangeness pair E/s as it may show change in reaction mechanism.

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

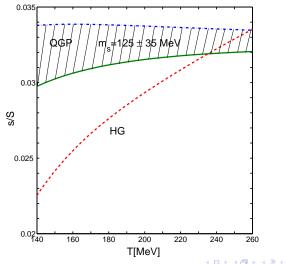
< ロ > < 回 > < 回 > < 回 > - < 回 > - <

Why relative s/S

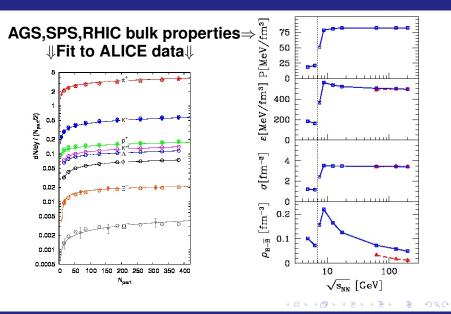
Relative s/S yield measures the number of active degrees of freedom and the degree of relaxation when strangeness production freezes-out. Perturbative expression in chemical equilibrium:

$$\frac{s}{S} = \frac{\frac{g_s}{2\pi^2} T^3 (m_s/T)^2 K_2(m_s/T)}{(g2\pi^2/45)T^3 + (g_s n_{\rm f}/6)\mu_q^2 T} \simeq \frac{1}{35} = 0.0286$$

much of $O(\alpha_s)$ interaction effect cancels out. When considered $s/S \rightarrow 1/31 = 0.0323$. Now introduce QGP nonequilibrium

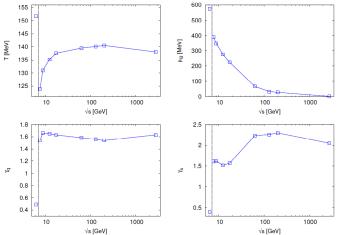

$$\frac{s}{S} = \frac{0.03\gamma_s^{\text{QGP}}}{0.4\gamma_{\text{G}} + 0.1\gamma_s^{\text{QGP}} + 0.5\gamma_q^{\text{QGP}} + 0.05\gamma_q^{\text{QGP}}(\ln\lambda_q)^2} \rightarrow 0.03\gamma_s^{\text{QGP}}.$$

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

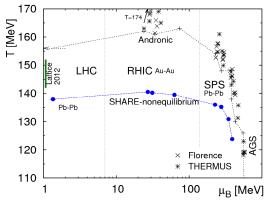

< ≣⇒

2

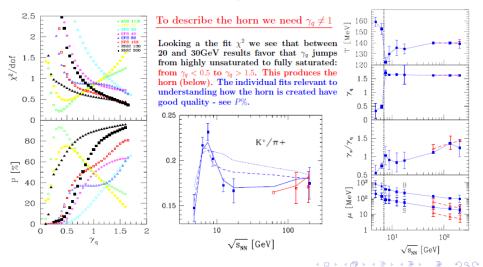
Two phases: Difference of equilibrium


Jan Rafelski, CPOD, WROCLAW, June 2, 2016

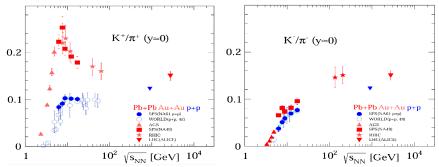
Jan Rafelski, CPOD, WROCLAW, June 2, 2016


Cooking plasma and the horn

Jan Rafelski, CPOD, WROCLAW, June 2, 2016


Consistency with Lattice-QCD

Chemical freeze-out MUST be below lattice results. For direct free-streaming hadron emission from QGP, *T*-SHM is the QGP source temperature, there cannot be full chemical equilibrium.


Jan Rafelski, CPOD, WROCLAW, June 2, 2016

Use of nonequilibrium and the rôle of s/S = strangeness/multiplicity

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

Marek's Discovery: The HORN is doing well today

Evidence of drastic change in matter properties – far from equilibrium hadrons turn at the peak into a quark-gluon plasma ball in near equilibrium. Use of non-equilibrium physics essential in understanding the Horn and understanding the threshold of QGP formation.

Jan Rafelski, CPOD, WROCLAW, June 2, 2016

ヘロト ヘヨト ヘヨト ヘヨト

Summary

- 50 years ago particle production in *pp* reactions prompted introduction of Hagedorn Temperature *T*_H; soon after recognized as the critical temperature at which matter surrounding us dissolves into the fundamental phase of quarks and gluons – the QGP.
- Global effort to discover QGP followed. Strangeness and Marek's lifespan of dedicated research played a pivotal role. The predicted signatures confirmed – not only strange antibaryons! New ideas emerge showing QGP consistency. While some people will keep arguing, ...
- ... overall there is little doubt that the totality of evidence is evidence for QGP phase of matter; each small item in the long list can be explained in some other way but all of the list emerges in a simple new paradigm.