– Springer Lecture –

Horizons, Causality and Information Transfer

Helmut Satz

Universität Bielefeld, Germany

based on joint work with Paolo Castorina and Salvatore Plumari

CPOD, May 2016

Wrocław, Poland

Horizons

- In our terrestrial world, horizons are elusive: approach a horizon & it recedes, so you cannot cross it.
- In special relativity, speed of light defines event horizon separating past, future and elsewhere.
- In general relativity, ∃ event horizon of black holes separating inside and outside: you can never see something crossing it, and if you cross it yourself, you can never return.

Horizons were central to human thinking for a long time:

• In Greek mythology ∃ River Lethe the river of oblivion, of forgetting, when you cross it, you loose all memory of the past.

Conclude: Horizons are limits to information transfer.

Information transfer ~ speed of light ~ causality constraints Observer at point x = 0 & time ct_0 can receive information only from points $|x| \leq ct_0 - ct$;

all events at $|x| > ct - ct_0$ are causally disconnected: they are beyond causal horizon.

In cosmology \Rightarrow horizon problem photons (a) and (b) come from regions causally disjoint at time of last scattering.

cannot communicate, but both \Rightarrow temperature 2.725°K.

Our topic:

Causality (communication via finite speed of light) divides space-time for strong interactions into regions which cannot communicate with each other.

Consider boost-invariant hadron production in high energy collision; QGP formation $(ct)^2 - x^2 = \tau_q^2$ hadronisation $(ct)^2 - x^2 = \tau_h^2$

Collision produces QGP fireballs, one at rest in CMS and others moving ever faster ("inside-outside cascade")

When can these fireballs communicate with each other?

fireballs at large rapidity are beyond causal horizon for fireball at rest in CMS;

causal extent of a single fireball?

define "one" fireball as causally connected region: \rightarrow spatial size

$$d = \sqrt{rac{ au_h}{ au_q}} (au_h - au_q)$$

effective fireball size depends on QGP life-time

result:

QGP space-time is partitioned into causally disjoint regions

Consequence:

local conservation of discrete quantum numbers

 \rightarrow local strangeness compensation [Hagedorn, Redlich]

strangeness must be conserved within a volume of size

 $d = \sqrt{rac{ au_h}{ au_q}} (au_h - au_q) \quad ext{ with V(d)} < ext{V(global)}$

What does that mean? \Rightarrow effective strangeness suppression [Hamie,Redlich,Tounsi 2000]

Recall:

– hadron abundances in high energy collisions

 \sim ideal resonance gas

- strange particle suppression, via γ_s^n for hadrons with *n* quarks/antiquarks

NB:

more suppression in pp than in AA; why?

Local strangeness conservation implies V_c plays role of γ_s :

 $Z(T,V,\gamma_s)\sim Z(T,V,V_c)$

why is $\gamma_s \sim V_c$ smaller in pp than in AA collisions?

Causality \rightarrow correlation volume

 $d = \sqrt{rac{ au_h}{ au_q}} (au_h - au_q) = ext{in terms of measurable quantities}?$

Boost-invariant production \rightarrow 1-d hydrodynamic expansion

$$rac{d\epsilon}{d au} = -rac{(\epsilon+p)}{ au}$$

 \rightarrow correlation of proper time τ & energy density/pressure to solve, need QGP equation of state

express $\epsilon(p)$, solve hydro eq'n.

• ideal QGP, massless quarks $(p = \epsilon/3)$: $\frac{\tau_h}{\tau_q} = \left(\frac{\epsilon_q}{\epsilon_h}\right)^{3/4}$ • neglect pressure (p = 0): $\frac{\tau_h}{\tau_q} = \left(\frac{\epsilon_q}{\epsilon_h}\right)$

• get EoS from lattic QCD ($p = a\epsilon$, 0 < a < 1/3)

$$rac{ au_h}{ au_q} = \left(rac{\epsilon_q}{\epsilon_h}
ight)^{1/(1+a)} .$$

hadronisation energy density \sim universal confinement value $\epsilon_h \simeq 0.4 - 0.6 \ {\rm GeV/fm}^3$

equilibration time ~ universal value τ_q

leads to crucial result, independent of detailed EoS form:

size d(s) of correlation region is fully determined by initial energy density $\epsilon_q(s)$ at collision energy \sqrt{s} .

If $d(s) \sim \gamma_s(s)$ determines strangeness suppression, then $\gamma_s(s)$ must be a universal function of $\epsilon_q(s)$

• eliminate s and consider $\gamma_s(\epsilon_q)$:

$$\epsilon_q \, au_q \simeq rac{1.5\,m_T}{\pi R_x^2} \Big(rac{dN}{dy} \Big)_{y=0}^x, \,\, ext{with} \,\, x \sim pp, pA, AA$$

 $a_A=0.7613,\;b_A=0.0534;\;\;a_p=0.797;\;b_p=0.04123$

strangeness suppression as f(s):

$$egin{aligned} &\gamma_s^A(s) = 1 - c_A \exp{(-d_A \sqrt{A \sqrt{s}})} \ &\gamma_s^p(s) = 1 - c_p \exp{(-d_p s^{1/4})}, \ &c_A = 0.606, \; d_A = 0.0209; \; \; c_p = 0.5595; \; d_p = 0.0242 \end{aligned}$$

Can now plot γ_s vs. ϵ_q and compare to AA, pA, pp data

conclude:

- $\gamma_s(\epsilon_q)$ curves for pp and AA coincide
- $\gamma_s(\epsilon_q)$ data for pp, pA, AA agree with prediction

Further test: vary centrality of AA collision at fixed s

$$\epsilon_{0}^{N_{p}} \; au_{0} = rac{1.5 \, m_{T}(0.5 N_{p})}{\pi R_{N_{p}}^{2}} \Big(rac{dN}{dy} \Big)_{y=0}^{AA}$$

with N_p for the number of participants. Compare γ_s to $\epsilon_0^{N_p}$ for Au - Au and Cu - Cu data at 200 GeV (RHIC)

• Conclude:

strangeness suppression is uniquely determined by initial energy density in pp, pA, AA collisions

• Why?

- strangeness conservation must hold in causally connected space-time regions ("windows" between ϵ_q and ϵ_h)

- their size is determined by the initial energy density

- their size grows with increasing s, A, \Rightarrow grand canonical ensemble, no more strangeness suppression
- corollary: for pp at sufficiently large $s, \gamma_s \rightarrow 1$
 - P. Castorina & H. Satz, Int. J. Mod. Phys. E23 (2014) 1450019.
 - P. Castorina & H. Satz, arXiv:1601.01454
 - P. Castorina, S. Plumari and H. Satz, arXiv:1603.06529