- Springer Lecture -

Horizons, Causality and Information Transfer

Helmut Satz
Universität Bielefeld, Germany
based on joint work with
Paolo Castorina and Salvatore Plumari

Horizons

- In our terrestrial world, horizons are elusive: approach a horizon $\&$ it recedes, so you cannot cross it.
- In special relativity, speed of light defines event horizon separating past, future and elsewhere.
- In general relativity, \exists event horizon of black holes separating inside and outside: you can never see something crossing it, and if you cross it yourself, you can never return.

Horizons were central to human thinking for a long time:

- In Greek mythology \exists River Lethe the river of oblivion, of forgetting, when you cross it, you loose all memory of the past.

Conclude: Horizons are limits to information transfer.

Information tranfer \sim speed of light \sim causality constraints Observer at point $x=0 \&$ time $c t_{0}$ can receive information only from points $|x| \leq c t_{0}-c t$;
all events at $|x|>c t-c t_{0}$ are causally disconnected: they are beyond causal horizon.

In cosmology \Rightarrow horizon problem photons (a) and (b) come from regions causally disjoint at time of last scattering.

cannot communicate, but both \Rightarrow temperature $2.725^{\circ} \mathrm{K}$.

Our topic:
Causality (communication via finite speed of light) divides space-time for strong interactions into regions which cannot communicate with each other.

Consider boost-invariant hadron production in high energy collision; QGP formation $(c t)^{2}-x^{2}=\tau_{q}^{2}$ hadronisation $(c t)^{2}-x^{2}=\tau_{h}^{2}$

Collision produces QGP fireballs, one at rest in CMS and others moving ever faster ("inside-outside cascade")

When can these fireballs communicate with each other?
fireballs at large rapidity are beyond causal horizon for fireball at rest in CMS; causal extent of a single fireball?

define "one" fireball as causally connected region:
\rightarrow spatial size

$$
d=\sqrt{\frac{\overline{\tau_{h}}}{\tau_{q}}}\left(\tau_{h}-\tau_{q}\right)
$$

effective fireball size depends on QGP life-time
result:
QGP space-time
is partitioned into causally disjoint regions

Consequence:
local conservation of discrete quantum numbers
\rightarrow local strangeness compensation
strangeness must be conserved within a volume of size

$$
d=\sqrt{\frac{\tau_{h}}{\tau_{q}}}\left(\tau_{h}-\tau_{q}\right) \quad \text { with } \mathrm{V}(\mathrm{~d})<\mathrm{V}(\text { global })
$$

What does that mean? \Rightarrow effective strangeness suppression
[Hamie,Redlich,Tounsi 2000]
Recall:

- hadron abundances in high energy collisions \sim ideal resonance gas
- strange particle suppression, via γ_{s}^{n} for hadrons with n quarks/antiquarks

NB:

more suppression in $p p$ than in $A A$; why?

Local strangeness conservation implies \boldsymbol{V}_{c} plays role of γ_{s} :

$$
Z\left(T, V, \gamma_{s}\right) \sim Z\left(T, V, V_{c}\right)
$$

why is $\gamma_{s} \sim \boldsymbol{V}_{\boldsymbol{c}}$ smaller in $\boldsymbol{p} \boldsymbol{p}$ than in $\boldsymbol{A} \boldsymbol{A}$ collisions?

Causality \rightarrow correlation volume

$$
d=\sqrt{\frac{\tau_{h}}{\tau_{q}}}\left(\tau_{h}-\tau_{q}\right)=\text { in terms of measurable quantities? }
$$

Boost-invariant production \rightarrow 1-d hydrodynamic expansion

$$
\frac{d \epsilon}{d \tau}=-\frac{(\epsilon+p)}{\tau}
$$

\rightarrow correlation of proper time $\tau \&$ energy density/pressure to solve, need QGP equation of state
express $\epsilon(\boldsymbol{p})$, solve hydro eq'n.

- ideal QGP, massless quarks $(p=\epsilon / 3): \frac{\tau_{h}}{\tau_{q}}=\left(\frac{\epsilon_{q}}{\epsilon_{h}}\right)^{3 / 4}$
- neglect pressure $(p=0): \quad \frac{\tau_{h}}{\tau_{q}}=\left(\frac{\epsilon_{q}}{\epsilon_{h}}\right)$
- get EoS from lattic QCD ($p=a \epsilon, 0<a<1 / 3$)

$$
\frac{\tau_{h}}{\tau_{q}}=\left(\frac{\epsilon_{q}}{\epsilon_{h}}\right)^{1 /(1+a)}
$$

hadronisation energy density \sim universal confinement value

$$
\epsilon_{h} \simeq 0.4-0.6 \mathrm{GeV} / \mathrm{fm}^{3}
$$

equilibration time \sim universal value τ_{q}
leads to crucial result, independent of detailed EoS form:

> size $d(s)$ of correlation region is fully determined by initial energy density $\epsilon_{q}(s)$ at collision energy \sqrt{s}.

If $d(s) \sim \gamma_{s}(s)$ determines strangeness suppression, then $\gamma_{s}(s)$ must be a universal function of $\epsilon_{q}(s)$

- eliminate s and consider $\gamma_{s}\left(\epsilon_{q}\right)$:

$$
\epsilon_{q} \tau_{q} \simeq \frac{1.5 m_{T}}{\pi R_{x}^{2}}\left(\frac{d N}{d y}\right)_{y=0}^{x}, \text { with } x \sim p p, p A, A A
$$

multiplicity data as $f(s)$:

$$
\begin{aligned}
& \left(\frac{d N}{d y}\right)_{y=0}^{A A}=a_{A}(\sqrt{s})^{0.3}+b_{A} \\
& \left(\frac{d N}{d y}\right)_{y=0}^{p p}=a_{p}(\sqrt{s})^{0.22}+b_{p}
\end{aligned}
$$

ALI-PUB-15

$$
a_{A}=0.7613, \quad b_{A}=0.0534 ; \quad a_{p}=0.797 ; \quad b_{p}=0.04123
$$

strangeness suppression as $f(s)$:

$$
\begin{gathered}
\gamma_{s}^{A}(s)=1-c_{A} \exp \left(-d_{A} \sqrt{A \sqrt{s}}\right) \\
\gamma_{s}^{p}(s)=1-c_{p} \exp \left(-d_{p} s^{1 / 4}\right) \\
c_{A}=0.606, d_{A}=0.0209 ; \quad c_{p}=0.5595 ; d_{p}=0.0242
\end{gathered}
$$

Can now plot γ_{s} vs. ϵ_{q} and compare to $\boldsymbol{A} \boldsymbol{A}, \boldsymbol{p} \boldsymbol{A}, \boldsymbol{p} \boldsymbol{p}$ data

conclude:

- $\gamma_{s}\left(\epsilon_{q}\right)$ curves for $p p$ and $\boldsymbol{A} \boldsymbol{A}$ coincide
- $\gamma_{s}\left(\epsilon_{q}\right)$ data for $p p, p A, A A$ agree with prediction

Further test: vary centrality of $A \boldsymbol{A}$ collision at fixed s

$$
\epsilon_{0}^{N_{p}} \tau_{0}=\frac{1.5 m_{T}\left(0.5 N_{p}\right)}{\pi R_{N_{p}}^{2}}\left(\frac{d N}{d y}\right)_{y=0}^{A A}
$$

with N_{p} for the number of participants. Compare γ_{s} to $\epsilon_{0}^{N_{p}}$ for $A u-A u$ and $C u-C u$ data at 200 GeV (RHIC)

- Conclude:
strangeness suppression is uniquely determined by initial energy density in $p p, p A, A A$ collisions
- Why?
- strangeness conservation must hold in causally connected space-time regions ("windows" between ϵ_{q} and ϵ_{h})
- their size is determined by the initial energy density
- their size grows with increasing s, A, \Rightarrow grand canonical ensemble, no more strangeness suppression
- corollary: for $p p$ at sufficiently large $s, \gamma_{s} \rightarrow 1$
P. Castorina \& H. Satz, Int. J. Mod. Phys. E23 (2014) 1450019.
P. Castorina \& H. Satz, arXiv:1601.01454
P. Castorina, S. Plumari and H. Satz, arXiv:1603.06529

