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Introduction : Confinement and Chiral Symmetry Breaking

Color Confinement and Chiral Symmetry Breaking (CSB)
are most important phenomena of Nonperturbative QCD

The relation between

Confinement and CSB
IS not yet known

directly from QCD.

Order parameter of Confinement: Polyakov loop <Lp>x e Ea/T

Order parameter of CSB: Chiral Condensate <qg>



Correlation between Confinement and CSB is suggested by
Simultaneous Phase Transition of
Deconfinement and Chiral Restoration.

Lattice QCD results at finite temperature F. Karsch, Lect. Notes Phys. (2002)
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Fig. 2. Deconfinement and chiral symmetry restoration mn 2-Havour QCD: Shown
1= (L) (left), which 15 the order parameter for deconfinement mn the pure gauge
limit (mq — oc), and (%) (right), which is the order parameter for chiral sym-
metry breaking i the chiral hmit (m; — 0). Also shown are the corresponding
susceptibilities as a function of the coupling 3 = 6/g°.



More on correlation between Confinement and Chiral Sym Breaking

Also, similar Coincidence between Deconfinement and Chiral Restoration
Is found in Finite-Size lattice QCD.

In fact, Simultaneous Phase Transitions occur according to the Box Size.
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Of course, Finite-Temperature Phase transition is also a kind
of Finite-Size effect of Euclidean Lattice in temporal direction.



More on correlation between Confinement and Chiral Sym Breaking

The close relation between Confinement and CSB has been indicated
In terms of Monopoles appearing in Maximally Abelian Gauge in QCD.

By removing the Monopoles from the QCD vacuum,

the confinement property and CSB are simultaneously lost.

[e.g. Dual GL theory: H.S., S.Sasaki and H.Toki, NPB (1995),
LQCD : O.Miyamura, PLB (1995), R.Woloshyn, PRD(1995). ]
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A Geometrical explanation of simultaneous Confinement and CSB
in Holographic QCD (the Sakai—Sugimoto model) at T=0

T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113 (2005) 843.
K. Nawa, H.S. and T. Kojo, PRD75 (2007) 086003.

Using D4/ D8/D8-brane, massless QCD (quarks and gluons) can be constructed.
Here, D4—-brane gives color and Gluons and D8-brane gives flavor.
Left (Right) Quarks appear at the cross point between D4 and D8 (D8bar).
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Holographic construction of non-SUSY Yang-Mills theory
with Gauge/Gravity correspondence

St-compactified N, D4-brane - SURGA solution of D4 brane
X,=(t X, Y, 2)

ds? = H(u) (77, ,dx“dx” + f (u)d7?)

(@ @ 6 + H(u)Y3(du?/ f (u) +u2d Q?)

—1_ 3
10-dim space-time f(u)=1-(u, /u)

Genus appears around o
D4-brane D4-brane (u<u,)
5-dim
5-dim
),-4/
g4
g4
SN—

-SUSY is broken by the periodic/antiperiodic boundary condition of St. (Witten 98)
-D4-brane is replaced by Curved Space of Gravitational Solution.

- Around the D4-brane, 10 dim. space-time disappear, that is, D4-brane leads
Genus of 10 dim. space-time. This leads to linear confinement potential for quarks.



In Large N_ limit, D4-brane is extremely massive and is replaced by Gravitational
background, under assumption of AdS/CFT (gauge/gravity) correspondence.

D4x NC ................................. > GraVitational background
D8’ﬁfo snafliicnncucnnnnnnnnnnnnns > D8,D_8XNf

D4-brane x Nc
I_L\

10dim. space time

K. Nawa, H. S. and T. Kojo, PRD75 (2007) 086003.

Chiral symmetry breaking is thus realized by the geometrical connection of D8
and D8bar branes. ... These considerations may suggest that chiral symmetry
breaking and color confinement occur simultaneously.

In Holographic QCD, Confinement and Chiral SB may occur simultaneously
due to the “Genus” in 10 dim. Space-time created by large Nc D4-brane.



A possible Difference between Deconfinement and Chiral Restoration in QCD
~ controversial

Other Lattice QCD calculation

Y. Aoki, Z. Fodor, S.D. Katz,
K.K. Szabo, PLB643 (2006)

Chiral Restoration: Tc=151MeV
Deconfinement: Td=176MeV
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A Large Difference between Deconfinement and Chiral Restoration
In the case of Adjoint-Color Fermion

Lattice QCD calculation with Adjoint-Color Fermion

“‘Deconfinement and chiral symmetry restoration in an SU(3) gauge theory
with adjoint fermions”, F. Karsch, M. Lutgemeier, NPB550 (1999).

We analyze the finite temperature phase diagram of QC'D with fermions in the
adjoint representation. The simulations performed with four dynamical Majorana
fermions show that the deconfinement and chiral phase transitions occur at two
distinct temperatures. While the deconfinement transition is first order at Ty we
find evidence for a continuous chiral transition at a higher temperature| T, — § T,:J
We observe a rapid change of bulk thermodynamic observables at Ty which reflects
the mcrease in the number of degrees of freedom. However, these show little vari-
ation at T, where the fermion condensate vanishes. We also analyze the potential
between static fundamental and adjoint charges in all three phases and extract the
corresponding screening masses above Ty,

QCD with fundamental color fermion: Coincidence v
of Chiral transition and deconfinement Tc=Td

Adjoint-color fermion: Chiral transition at
much higher temperarture Tc = 8Td

Umm... It is not ordinary QCD...



Holographic Construction of Massless 1+1 QCD at T =0

Y. Nakagawa, K. Matsumoto and H.S.

Using D2/D8/D8-brane system, massless 1+1 QCD (quarks and gluons) can be

constructed. Here, D2-brane gives color and Gluons and D8—-brane gives flavor.

Left (Right) Quarks appear at the cross point between D2 and D8 (D8bar).
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Holographic description of 1+1 Yang-Mills theory
with Gauge/Gravity correspondence

St-compactified N, D2-brane - SURGA solution of D2 brane
X,=(t, x)

ds® = H(u)™* (s, dx“dx" + f (u)dz?)

@ @ 6 + H(U)M?(du?/ f (u) +u’d Q?)

_1_ 5
10-dim space-time Fu)=1-(u,/u)

Genus appears around o
D2-brane D2-brane (u<u,)
7-dim
7-dim
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g6
g6
SN——

-SUSY is broken by the periodic/antiperiodic boundary condition of Si.

-D2-brane is replaced by Curved Space of Gravitational Solution.

- Around the D2-brane, 10 dim. space-time disappear, that is, D2-brane leads
Genus of 10 dim. space-time. This leads to linear confinement potential for quarks.



Y. Nakagawa, K. Matsumoto and H.S.

Consider St-compactified Large N, D2-brane with N, D8-D8-brane.
This system leads to non-SYSY 1+1 QCD at T = 0.

D2 X NC ................................ > Gravitational background
D8,D_8X Nf e > D8,D_8fo

D2-brane X Nc
I_L\

| 10dim. space time

Like the Sakai-Sugimoto model, this holographic QCD leads to “Color
Confinement”. Simultaneously, Chiral Symmetry is also spontaneously
broken due to the connection (topological change) of D8 branes.
However, including 1/N_ higher order, CSB is no more realized in 1+1 dim.




Examples with Confinement but without Chiral Symmetry Breaking

1+1 QCD (N, = 2)
* Confinement is realized.
- Spontaneous Chiral Symmetry Breaking does NOT occur.
(Because of Coleman—Mermin—Wagner theorem:
In 1+1 space—time, massless scalar leads to IR instability
and cannot appear, so that spontaneous symmetry
breaking accompanying massless NG bosons NEVER occurs.

N'=1 SUSY 1+3 QCD with N, =A,+1
*Confinement is realized.
- Spontaneous Chiral Symmetry Breaking does NOT occur.




Banks-Casher Relation

> =[(ga) = lim lim z p(0)

m—0V -

(A1) :$<Z5(/1—/1n)> : QCD Dirac operator eigenvalue density

B|n)=i4,/n)

N

Zero-eigenvalue density p(0) of QCD Dirac operator [D
gives Chiral Condensate.

= The essential modes for Chiral Sym Breaking are
Low-lying Dirac modes.

& The non-zero spectrum is symmetric due to {7/5, D} =0
Iﬁl/jn = ﬂnl/jn — E3(75Wn) — _/In (7/5Wn)

Let us consider Confinement in terms of Dirac modes.




Previous study: Eigen-value distribution of QCD Dirac operator
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We Remove the contribution of
Low-lying Dirac modes.

<qq>lR * Z 2m <qq>lR

AnZA R ﬂ’ﬁ +m” <qq>

~ 0.02

for mq~5 MeV

Chiral Condensate is extremely reduced (only 2% remains)
after removing the low-lying Dirac modes.

(cf. Banks-Casher relation)



Previous study: Wilson Loop after removing low-lying Dirac modes (T=0)
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T S.Gongyo, T.Iritani, H.S., PRD86 (2012) 034510.
T | Lattice QCD result of
] Wilson Loop and Inter-Quark Potential

Ny ‘ "7 before/after the removal of low-lying Dirac modes

~~~~ - Wilson Loop Potential
.......... 15 g :
2w Without low-lying *
... = original — Dirac modes .
0.1} T e z .
.~,.... ............. ; 1 .
Without e 1 |
. . ..'~ b -
low-lying Dirac modes '{ « original
05 F
0.01 : : : ' ' 2 . .
0 1 2 3 4 5 6 0 1 2 3
RXT[a%] R[a]

Wilson Loop obeys the Area Law and
the confining force is almost unchanged
even after the removal of low-lying Dirac modes,
which are responsible to chiral symmetry breaking.




Previous study: IR-Dirac-mode-cut Polyakov Loop (finite T)

IR-Dirac-mode-cut P0|yakov Loop T.Iritani, H.S., PTEP 2014 3 033B03.
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Fig. 11. The Polyakov loop (Lp) (left) and the IR Dirac mode cut Polyakov loop (Lp)r (right) with

Am ~ 0.08a7 ! ona 12° x 4 lattice at B = 5.6 (confinement phase).

Even after removing the low-lying Dirac modes, Polyakov loop remains to be
zero, which means confinement phase and unbroken Z;-center symmetry.




Thus, our lattice-QCD results indicated
negligible contribution of low-lying Dirac modes
for confinement, while these modes are essential
for chiral symmetry breaking.
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Lattice QCD

In lattice QCD, gauge degrees of freedom is described by
Link-variable defining on a Link on the lattice.
Gluon field is exponentiated into Link-variable.

/

X X+ [

U,(x)=e""" e SU(N,)

A

Gauge transformation : Link-variable is sandwiched
by the gauge functions on both edges of the link.

U, (x) >UY(x) =V (s)U ,(X)V' (s+ £2)



2. Analytic Formula between Polyakov Loop and Dirac mode
at any Temperature

Setup:

-ordinary square lattice with temporally odd number N, (<N )
-normal periodic boundary condition for gluons

-Elitzur Th.:only gauge-invariant quantities have nonzero expectation value

Analytical Formula: Dirac spectral representation of Polyakov loop
N,—1 A
Lo oc > A4 (n U, [n)
n

L, : Polyakov Loop, A, : Dirac eigenvalue, |n> : Dirac eigenmode

Result: small contribution of low-lying Dirac modes to Polyakov loop
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Eigen-mode of Dirac operator in Lattice QCD

. 1 & . .
D,, = Z_aZ;y#[U”(wa’w -U_,(x)d,,_,]| :Lattice Dirac operator
=

N

D

Z IZ,\)xy%”n (y) = iﬂ‘an (X)

U,(x)=e"*" U (x)=U,(x-2)

n> - m«n‘ n> :Dirac eigen-state‘ﬂ> , Dirac eigen-value 4, € R

:Dirac eigen-function g, (x)

Explicit form of Dirac eigen-value equation in lattice QCD

1
2a 4

Z?“[Uﬂ(x)wn (X+ ) =U_, (X, (X= )] =14,p,(X)

U, (x) >V (U, (V" (x+ 2)

Gauge trans. property:

v, (X) >V (X)), (X) same as quark field

apart from an irrelevant

(min)= Jd Xy, (), (X) =6,y inormalization global phase factor




We introduce ~
Link-variable operator|U

defined by the matrix element of

MU
<X‘Ui,u‘ y> :Ui,u(x)gxift,y U—y(X)EUJL(X_;&)
Using link-variable operator, many notations are quite simplified:
D = 2—161 U p ~-U_ ) :covariant derivative operator

. 1 & ..
D=—>»*U,-U_)| :Lattice Dirac operator

D n> =14 \n} :Dirac eigenstate, Dirac eigenvalue 4, €R

(Lp)oc TrU, = > (x|trU"

X

X) :Polyakov loop

Tr=>_ tr.:functional trace



Temporally Odd-Number Lattice

In this study, we use a standard square lattice with

ordinary (nontwisted) periodic boundary condition for gluons.

But we consider temporally odd-number lattice,

where the temporal lattice size N, is odd. (N, < N)
O

¢ I N, =3 case

O

NB: in the continuum limit of a — 0, N, — oo,
any number of large N, gives the same result.
Then, it iIs no problem to use the odd-number lattice.

For the simple notation,
we take the lattice unit a=1 hereafter.



Temporally Odd-Number Lattice

In general, only gauge-invariant quantities
such as Closed Loops and the Polyakov loop
survive in QCD. (Elitzur's Theorem)

Polyakov loop

¢ I T N, =3 case

i

O Closed Loops

All the non-closed lines are gauge-variant
and their expectation values are zero.

€.9. Trd,UU_, = > tfU, (U, (x+ U, (x+1)}=0

gauge-variant «x
Tr ‘ ,‘, =0



Temporally Odd-Number Lattice

In general, only gauge-invariant quantities
such as Closed Loops and the Polyakov loop
survive in QCD. (Elitzur's Theorem)

Polyakov loop

¢ I T N, =3 case

i

O Closed Loops

All the non-closed lines are gauge-variant
and their expectation values are zero.

NB: any closed loop needs even-number
link-variables on the square lattice.



Temporally Odd-Number Lattice

O

¢ I N, =3 case

0
On the temporally odd-number lattice,
we consider the functional trace:

| =TrU, DN = Z<x | trU, DN x> — <trU4|z°)Nt—1

” >space—time

Tr=> trtr,  tr=trtr

color & spinor



Property on functional trace 1 =TrJ,D%™* = <tr04®Nt_1>

space-time

NB: | =TrU,D"™ consists of products of N link-variable
operators, since the Dirac operator D= Zy”(u -U_)
Includes one link-variable operator in each dlrectlon tu

N N

| =TrU,D" " includes many trajectories on the square lattice.

| i | -

O
I Ny =3 case Any closed loop needs
t

even-number link-variables
on the square lattice.




Property on functional trace 1 =TrJ,D%™* = <tr04®Nt_1>

space-time

NB: | =TrU,D™™ consists of products of N link-variable

operators, since the Dirac operator D= Zy”(u -U W)
Includes one link-variable operator in each dlrectlon tu

| =TrU,D" " includes many trajectories on the square lattice.

In this functional trace | =TrJ,D™*

It is iImpossible to form a closed loop on the square lattice,
because the total number of the link-variable, N,, is odd.
Almost all trajectories are gauge-variant & give no contribution.

O =
’ Ny =3 case Any closed loop needs
t I

even-number link-variables
on the square lattice.

Gauge-variant! The trace on y-matrix
also gives a constraint.




Property on functional trace 1 =TrJ,D%™* = <tr04®Nt_1>

space-time

NB: | =TrU,D™™ consists of products of N link-variable

operators, since the Dirac operator D= Zy“(u -U W)
Includes one link-variable operator in each dlrectlon tu

| =TrU,D" " includes many trajectories on the square lattice.

In this functional trace | =TrJ,D™ ™"

It is iImpossible to form a closed loop on the square lattice,
because the total number of the link-variable, N,, is odd.
Only the exception is the Polyakov loop.

O ¥
] ) Ny =3 case Any closed loop needs
t

even-number link-variables
on the square lattice.

Gauge-invariant! The trace on y-matrix
also gives a constraint.




Property on functional trace 1=TrJ,D™™" = <tr04®Nt_l>

space-time

NB: | =TrU,D™™ consists of products of N link-variable

operators, since the Dirac operator D= Zy”(u -U )
Includes one link-variable operator in each dlrectlon tu

| =TrU,D" " includes many trajectories on the square lattice.

In this functional trace 1=TrJ,D™ "

It is iImpossible to form a closed loop on the square lattice,
because the total number of the link-variable, N,, is odd.
Only the exception is the Polyakov loop.

Therefore, in this functional trace | ETFU4|73Nt_1
only the Polyakov-loop ingredient can survive:

| =TrJ,D"* =TrJ,(y, D) =TrU, D"

cTrU,U,-U_ )N =TrU) =TrL, = <tr L,

>space—time



| =TrJ,D"*

= TrU4 (7/4 [34) Newd (. only gauge-invariant quantities survive)

_ TrLj4|54Nt—1 (0 7.t =1, NB:N-1is even)
1 An _
=8 TrU,U,-U_)""
1 TN . . - :
= e Trd, (+ only gauge-invariant quantities survive)
= — o Tr |:P (+ anti-periodicity of [A)L{n temporal direction)
- — 4 <trI:> (o trl=4, Tr= Ztr tr, )
2Nt_l c P space-time 4 7

space-time

Thus, | = TrU,D"*is proportional to Polyakov loop <th |:|3>

space-time



On one hand, we obtain

| =TrU,D" :—2:_1 <trC L

S
space-time

On the other hand,
using the complete set of the Dirac eigen-states | n>

| =TrJ, DN TZ<n|U4IZA)Nt1|n>:iNt1Zln'\'tl<n|04|n>
n T n
>'|n)n|=1 D|n)=i4,|n)

Combining them, we obtain the analytical relation:

), =B34 (10, I

[T.M. Doi et al., PRD90 (2014) 09405; PRD92 (2015) 094004; PTEP 2016 (2016) 013B06.]




<trC L

e == P A 01U, )

Each Dirac-mode contribution specified by n can be
iIndividually calculated in actual lattice QCD simulations.

NB: the sum of RHS can be expressed with Dirac eigenvalue ﬂun ,
Dirac eigenfunction ¥,(X) , and temporal link-variableU,(x) as

Z/InNt—1<n |Lj4 | n> — Zﬂ“nNt_lZ<n | X><X|U4 | X+f><X+f | n>
=3 4" W 00U, (), (x+£)

Each term is manifestly Gauge Invariant.
U,(X) >V (U, (V" (x+ 2)
. (X) =>V(X)y,(X)

Comment: There is no cancellation between chiral-pair Dirac states,

\n) and 7/5‘ n> .because N,- 1is evenand (A )™M= A"

Gauge trans. property:



T Y A UUAL

As a remarkable fact, because of the crucial factor A N7, the
contribution from small A, region is negligibly small in this sum.

(in comparison with other terms with large A.)

Here, the matrix element <n U, | n> IS generally nonzero for
each Dirac mode, and does not include explicit N, -dependence.
—The “counter factor” 1/A Nt"t never arise from <n U, | n>.

Comments:

- Even if {n|U,n) behaves as &-function d(A), the factor AN 1is still crucial, because of Ad(A)= 0.
In fact, without appearance of counter factor from <n|U,|n), the crucial factor A, Nt -1 |eads to
small contribution for low-lying Dirac modes.

- If RHS were not a sum but a product, the small A, region should have given an important
contribution, 1.e., a critical reduction factor, to the Polyakov loop. However, in the sum,

contribution from the small A, region is negligible.

- Even in the presence of a possible multiplicative renormalization factor for the Polyakov loop,
the low-A, contribution is negligible in this sum, relatively in comparison with other terms.




o e S AR LAY

n

- This relation is correct for any color number N, and any gauge group.
This Is correct at any temperature and both confined/deconfined phases.

“This is correct regardless of presence or absence of dynamical quarks,
although dynamical quark effects appear in Polyakov loop, Dirac
eigenvalue distribution, and Dirac-mode matrix element.

-Then, this relation is applicable to finite-density QCD.

This relation obtained on temporally odd-number lattice is expected to
hold in the continuum limit of a — 0, N, — oo, since any number of large
N, gives the same physical result.
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Lattice QCD calculation For detail, see T.M. Doi’s Talk

Using actual lattice QCD calculations at quenched level,

we confirm this analytical relation in both confined and
deconfined phases, and also show the negligible contribution
of low-lying Dirac modes to the Polyakov loop numerically.

Conclusion

From this relation, the contribution of low-lying Dirac modes

to the Polyakov loop is negligibly small,
while the low-lying Dirac modes are essential for CSB.

Then, this analytical relation indicates no direct (one-to-one)
correspondence between confinement and CSB in QCD.




Local Summary: Analytic Formula between Polyakov Loop
and Dirac mode at any Temperature

Setup:

-ordinary square lattice with temporally odd number N, (<N, )
-normal periodic boundary condition for gluons

Analytical Formula: Dirac spectral representation of Polyakov loop
N,—1 A
Looc > A <n U, |n>
n

L, : Polyakov Loop, A, : Dirac eigenvalue, |n> : Dirac eigenmode

Result: small contribution of low-lying Dirac modes to Polyakov loop
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3. Analytic Formula of Polyakov Loop Fluctuation with Dirac mode
near T,

This subject will be mainly presented by T.M.Doi’s Talk.

T. M. Doi, K. Redlich, C. Sasaki and H.S., PRD92 (2015) 094004,
“Polyakov Loop Fluctuations in the Dirac Eigenmode Expansion”.

Polyakov loop fluctuation is paid attention P.M. Lo, B. Friman, O. Kaczmarek,
for an indicator of the QCD transition. K. Redlich, C.Sasaki, PRD88 (2013) 074502.

1-2 T T T T T T T
r, A Polyakov-loop fluctuation ratio
(2 T '|' LI |' | B '| L ] e '|' |-
0.2 [ - d I uslinninha ARSI
C =570 7 =
N N V=10%x4 0.8 - i this work
0.1 T, = u n~0 (48,x4) —®—
C - ] D0 (485%6) &
L + 4 . D=0 (643x8) A
Q. - - 0.6 n=2+1(32°x8) + W 1 |
E 0 @- $Transverse n 5
- > 0.4 r 1
—0.1 - . Longitudinal J Drastic Change around T, .
- i 0.2 1 1 1 1 1 1 1
C ’ T>T, ] 0.5 1 1.5 2 25 3 35 4
-0.2 |- 3 = Temperature
b o li i la el liaailyd FIG. 3: The ratio of the absolute to longitudinal part
B B of the Polyakov loop susceptibilities calculated within lattice
0.2 0.1 0 0'}% PO'E gauge theory for pure gauge system and (2+41)-flavor QCD
e

(see text). The temperature is normalized to its (pseudo)
critical value for respective lattice. The line is the model

Scatter pIOt Of POIyakOV Ioop result explained in the text.



3. Analytic Formula of Polyakov Loop Fluctuation with Dirac mode

We derive Dirac-mode expansion formula for Polyakov loop fluctuations,
and find a small contribution of low-lying Dirac modes to them.

T. M. Doi, K. Redlich, C. Sasaki and H.S., PRD92 (2015) 094004,
“Polyakov Loop Fluctuations in the Dirac Eigenmode Expansion”.

Dirac mode representation of Polyakov loop fluctuation:
(3 in " (n|Ugm)P) = (|3 (n]Us|m) )

R — a -~ a -~ 2
LA TR (0] Ugln)) ) — (i Re(2K3 (n| Uy n)))?
10 E T T T T 3

- |:{conf — ]
Lattice QCD result of a [ Rehiral ===~
Polyakov_-loop fluctuatlpn ratio o 1 i Polyakov-loop fluctuation ratio ]
plotted with IR cut of Dirac modes s b ]
|n a COanned phase 0.1 ;‘ n"'-..,u.‘.quark Condensate_g
By removing low-lying Dirac modes, 001 . . . .

0 0.1 0.2 0.3 04 0.5

guark condensate is rapidly reduced,
but the Polyakov-loop fluctuation
Is almost unchanged.

Areat @R cut of Dirac modes

FIG. 5 (color online). The numerical results for the R and
Rconr ratio from Egs. (38) and (39), respectively, as a function of
an infrared cutoff A introduced on Dirac eigenvalues, expressed
in lattice units. The Monte Carlo calculations have been per-
formed on the 103 x 5 lattice at # = 5.6 and for the quark mass of
m =15 MeV.



4. Analytical Relation between Wilson loop and Dirac mode
at zero-temperature

Reference: H. S., T. M. Doi, T. Iritani, PTEP 2016 (2016) 013B06, Analytical
Formulae of the Polyakov and Wilson Loops with Dirac Eigenmodes in Lattice QCD.

“arbitrary square lattice (Even number lattice is OK.)
-Elitzur Th.: only gauge-invariant quantities have nonzero expectation value
- : _ TRITTITIRIAT 1 17
Wilson loop: W(R,T)=TH{U,; U UU,}=TH{U. U, }

oY

Staple operator: U =U U US

staple —

| GI 10, —GRGTU?

staple

W (R, T) 1 |

We consider |J = Tr{ljstaplelf)T} (T:even)




J=TrU_._ DT

staple

= TrLjstaple(}/4 D,)" (- only gauge-invariant quantities survive)

= TrUstaple[SAT (. 7/AI,\It_1 =1.,T iseven)
1 . .

= 2_TTrUstapIe(U4 _U—4)T

— ZLT TrU StapleLjI (- only gauge-invariant quantities survive)
y (o trl=4, Tr:ZX: tr, tr, )

=7 W oW —Tel] T
2 ( y W _Tr{LJstapleU4 })

Thus, J=TH{U,,,.D'} is proportional to Wilson loop W



On one hand, we obtain foreven T

DT = % w

staple 2T

J=TrU

On the other hand, using the complete set of the Dirac eigen-states | n>

‘J = Trustapleﬁ)T — Z<n |Ustaple|ﬁT | n> — (_)lezin-r <n | L’jstaple | n>

Zn:|n><n\=1 D[n)=i,|n)

Combining them, we obtain a relation for even T:

W =()""22"2>" 4" (n]U eI )

N V(R):—Iimian:—Iimiln

Towo T T T

> (24,) (Ui I 1)

n

—  o=-lim iInW=— lim iIn
RT-oxo RT RT-xo RT

> (22,)"(n[U e )



W = (_)T/ZZT_ZZlnT <n |Ustaple | n>

=— |lim iInW—— lim —In

Jim Jim 11> (22,)" (U )

n

Because of the factor 4. in the sum,

low-lying Dirac-mode contribution is to be small

for the Wilson loop W, the inter-quark potential V(R) and
the string tension o, unless the extra counter factor 1//1
appears from the matrix element <n |UStalole | n>

Thus, the string tension o, or the confining force,
IS expected to be unchanged by the removal of
low-lying Dirac-mode contribution.



Local Summary: Analytical Relation between
Wilson loop and Dirac mode

Setup:
= Arbtitary square lattice

Analytic formla of Wilson loop with Dirac modes

W (R, T)oc > 4" (n|U I N)

Wilson loop: W (R, T) = Tr{leRULleRUI} = Tr{ljstap,eUI}

A, : Dirac eigenvalue, |n> : Dirac eigenmode

Result: small contribution of low-lying Dirac modes to
the string tension or the quark confining force




The above formulae are mathematically valid.

Because, we have just used the Elitzur theorem
and the identity of completeness: ) |n)(n|=1

However, one may wonder the doubler in the use of

4
simple Lattice Dirac operator: D = ZiZy“ u,-uU_)
a ‘T




5. Formula for Wilson, Clover, Domain-Wall fermions

Let us remove the doublers !

With T. M. Doi



5-1. Formula for Wilson and Clover fermions

Clover fermion: O(a)-improved Wilson fermion

Setup:

-ordinary square lattice with N, =41+1 (<N )
-normal periodic boundary condition for gluons

-Elitzur Th.:only gauge-invariant quantities have nonzero expectation value

Analytic Formula: Dirac spectral representation of Polyakov loop

Lp oc > A <n U2 | n>

n

L, : Polyakov Loop, A, :Dirac eigenvalue, |n> : Dirac eigenmode

Result: small contribution of low-lying Dirac modes to Polyakov loop




Wilson and Clover fermions

Wilson Fermion Kernel in lattice formalism:

1

K= —yﬂ(U —u_ﬂ)+2—2(u +U. L —2)+m

2a

Clover Fermion Kernel in lattice formalism:

1

K=—y,U, - )+—Z(u +U_ —2)+ar—g

2a
Clover fermion: O(a)-improved Wilson fermion
Here, Field Strength is defined as Clover-type:
1 i
— g (P,uv - P,u v)

P,.(s)=(sjuUU_U_ +

vy v v —u = —v=u —u —VU,u

>
>
>
>

G
_I_
(-

v =_puv

o G +m



Detalils

Derivation of O(a)-improved Wilson fermion: Clover fermion
Consider the transformation of fermion field variables:
C , ., C
1//:(1+§ID)W l//:w(1+§ID) c=0(a)eR
Fermion action is transformed as

7 (D +m)y = '7'(“% D)(D + m)(l+% D)y’ = 7 {(L+cm)D +cD? + mhy' + O(c?)
=y"{D+c'D? +mhy" +0(a%)

Fermion variable measure is transformed as
DyD =DyD ' det 2 (1+ % D)=DyDF'(1+0(c?) = Dy'Dr"(1+cm){l+0(a®)}

Fermion generating functional up to O(a):

/ = J- Dwae_IW(D_Fm)W _ j‘ Dl//,D Wr’e_jg”(w_,_cqz) M)y



Details
Derivation of O(a)-improved Wilson fermion: Clover fermion
Fermion generating functional up to O(a):
5 _ J-D WD j 7(D+m)y J- Dy/DiF'e - [7"(D+cD>+m )y
Clover fermion action: O(a)-improved Wilson fermion

S = [d*x & (D +cD? + m)y
- c=0(a)eR

:.d xw(IZ)+c{D2+ g WG+ my

cf. Wilson fermion removes doublers but includes O(a) error:

Sw =jd4x w (D +cD? +m)y



Details
Lattice Clover fermion: O(a)-improved Wilson fermion

Fermion Kernel of Clover fermion:

K = D+C{D2+ 590 +m c=0(a)eR

,uv HV.

Clover Fermion Kernel in lattice formalism:

K = Ziyﬂ(u —U_u)+2—Z(U +U_ —2)+ar—go-WGW+m
Dirac term Wilson term Clover term
Here, Field Strength is defined as Clover-type:
5 (P =Pl
P.A8) = < su,Uu U, +UuU U U,+U U UL, +U UUU,s)



Formula for Wilson and Clover fermions

WIllson (or Clover) Fermion Kernel in lattice formalism:

1

K = 2—7/#(U —U_ﬂ)+—Z(U +U_ —2)+(ar—g o, Wj+m

On square lattice with N, =41 +1

_ B ~olady s 2 cf. Appendix of T. M. Doi, H. S., T. Iritani,
Consider J =Tr{U; "K'} PRD90 (2014) 094505.

The fermion kernel K includes many terms. However, to form Loop,
you have to select only U, term in all 21 K in the Trace J.

eg N, =5 (I =1) case
®

* 2
K? Lol
I — * — 1 U:lu _ LP
:: ijm :: ij_m ::
¢ ® ¢
Many terms in J = T{U? "K'} The Only Loop in

correspond to various trajectories. J=TU?"K?}



Formula for Wilson and Clover fermions

WIllson (or Clover) Fermion Kernel in lattice formalism:

1
K = 2—7/#(U ~U_ )+—Z(U +U_ —2)+(ar—g o, Wj+m

On square lattice with N, =41 +1

_ B ~olady s 2 cf. Appendix of T. M. Doi, H. S., T. Iritani,
Consider J =Tr{U; "K'} PRD90 (2014) 094505.

The fermion kernel K includes many terms. However, to form Loop,
you have to select only U, term in all 21 K in the Trace J.

hen
~ 1 +
] Tr‘ l |jl+1(2 7/4| | I 4)2I \ (2 ) Tr[l |4| 1( 2 | r.)ZI]

NB: At this stage, non-commutable nature disappears.
By taking Tr, all the odd y, terms vanishes:

J = (2a)? [A+r)" +@A—-r))]TrU,; ) < L,

Thus, J is found to be proportional to Polyakov loop.




Formula for Wilson and Clover fermions

On one hand, J is proportional to Polyakov loop.

J=Tr{U?"'K?*}c L,

On the other hand, using the eigenmode of K‘ n> = ixin‘ n>

J = (nJUZ"K|n) =) (i4,)*(n

n n

Ojl+l‘n>

Then

Lp oc > A2 <n U2 | n>

— Similar arguments are applicable.



Local Summary: Formula for Wilson and Clover fermions

Clover fermion: O(a)-improved Wilson fermion

Setup:

-ordinary square lattice with N, =41+1 (<N )
-normal periodic boundary condition for gluons

Analytic Formula: Dirac spectral representation of Polyakov loop
21 121+1
Ly o § ‘,;Ln <n U, ‘n>
n

L, : Polyakov Loop, A, :Dirac eigenvalue, |n> : Dirac eigenmode

Result: small contribution of low-lying Dirac modes to Polyakov loop




5-2. Formula for Domain-Wall fermion

Domain-Wall (DW) fermion: lattice fermion with “exact” chiral symmetry

Setup:

-ordinary square lattice with N, =41+1 (<N )
-normal periodic boundary condition for gluons

-Elitzur Th.: only gauge-invariant quantities have nonzero expectation value

Analytic Formula: Dirac spectral representation of Polyakov loop

Lo oc > A (v |02 [v) = > 2 (n, U |n, )+ O(M,)

1%

L, : Polyakov Loop, A :Dirac eigenvalue, |n> : Dirac eigenmode
M,: large DW mass of O(1/a)

Result: small contribution of low-lying Dirac modes to Polyakov loop




Domain-Wall (DW) fermion: lattice fermion with “exact” chiral symmetry

By introducing 5" dimension, “exact” chiral symmetry is realized.

Mass term in 5t dim: M(X;) = M, sgn(x;) M, ~a*:very large

Mass in 5t dim

M,

Eigenmode in 51" dim

O \ > X5 5th d|m

Chiral zero mode
located around Xz =0

_MO




Domain-Wall (DW) fermion: lattice fermion with “exact” chiral symmetry
By introducing 5" dimension, “exact” chiral symmetry is realized.

| | M, ~a " :verylarge
Mass in 5t dim

M, |

Eigenmode in 51" dim

Left-handed

> X5 5th d|m

Right-handed]

_MO

Chiral zero mode localized around X; =0, N,




Domain-Wall (DW) fermion: lattice fermion with “exact” chiral symmetry
Fermion Kernel of DW fermion:
K = D—|—C{D2—I— 590 +m+y0.+M(X) c=0(a)eR

y78% uv}

Only kinetic and mass terms in 5% dim.

DW Fermion Kernel in lattice formalism:

K = iyﬂ(U ~U_ )+2—Z(U +U_ —2)+ar—g

>a +m+7/555+M(x5)

,uv y72Y%

Dirac term Wilson term Clover term 5th-dim term

In 51 dim, No coupling
with Gluons (Link-variables)

5t dim has only kinetic and mass terms, so that it is solvable in 5% direction.
The extra degrees of freedom in 5" dim. is integrated out in the generating
functional. The UV divergence can be removed by Pauli-Villars regularization.



Formula for Domain-Wall (DW) fermion

DW Fermion 5-dim Kernel in lattice formalism:

1

K= 7/ﬂ(U )+—Z(u +U_ —2)+ar—g

>a + M+ .0 + M (X;)

,uv y7h%

On square lattice with N, =41 +1

_ B ~olady s 2 cf. Appendix of T. M. Doi, H. S., T. Iritani,
Consider J =Tr{U; "K'} PRD90 (2014) 094505.

The fermion kernel K includes many terms. However, to form Loop,
you have to select only U, term in all 21 K in the Trace J.

eg N, =5 (I =1) case

o °

¢ | 121 |
K2| A U4 A

— 4 % 14141
I - = U/ " =L

Y 1 72141 1
UjH—l | U4 + 1

o ® ¢

Many terms in J = Tr{UZ"7K?'} The Only Loop in

correspond to various trajectories. J=TU?"K?}



Formula for Domain-Wall (DW) fermion

DW Fermion 5-dim Kernel in lattice formalism:

1 ~
K= 7/#( _ﬂ)+—Z(U +U_ —2)+ar—g 0,,G,,+M+y:0s + M(Xs)

2a
On square lattice with N, =41 +1

_ B ~olady s 2 cf. Appendix of T. M. Doi, H. S., T. Iritani,
Consider J =Tr{U; "K'} PRD90 (2014) 094505.

The fermion kernel K includes many terms. However, to form Loop,
you have to select only U, term in all 21 K in the Trace J.
Then

1

. 1 s
J:Tr[uj' 1(2 yJ, t o 4)2'} 1 TrM” 1(n+r)2']

NB: At this stage, non-commutable nature disappears.
By taking Tr, all the odd y, terms vanishes:

J = (2a)? [A+r)" +@A—-r))]TrU,; ) < L,

Thus, J is found to be proportional to Polyakov loop.




Formula for Domain-Wall fermion

On one hand, J is proportional to Polyakov loop.

J ETr{ijH_lKZI}OC LP

On the other hand, using the eigenmode of K‘ n> = iAn‘ n>

)= 2K} =3 A, )7 (]2 )

n

Then L, oc ZAznl<n |Ujl+1 | n>

5-dim kernel eigenvalue A = 4-dim physical Dirac eigenvalue A
o, = A, +O(Mg?)

Lo oo AV U2 V) = 32 (v |02 [v) + O(M,?)

1%

— Similar arguments are applicable



Local Summary: Formula for Domain-Wall fermion

Domain-Wall (DW) fermion: lattice fermion with “exact” chiral symmetry

Setup:

-ordinary square lattice with N, =41+1 (<N )
-normal periodic boundary condition for gluons

Analytic Formula: Dirac spectral representation of Polyakov loop

Lp oc > A(v U v) = > & (n, U7 |n, )} +O(M?)

1%

L, : Polyakov Loop, A :Dirac eigenvalue, |n> : Dirac eigenmode
M,: large DW mass of O(1/a)

Result: small contribution of low-lying Dirac modes to Polyakov loop




Discussion

It seems natural to consider No direct one-to-one
correspondence between confinement and chiral
symmetry breaking in QCD. Actually, independent
of quark mass, confinement is realized. In fact, even
without chiral symmetry, color confinement occurs.

How about “coincidence” of Deconfinement and Chiral
Restoration temperatures ?

In general, around the (pseudo)critical point, all the physical
guantities can be largely changed, according to a drastic
change of order parameter.

If there iIs some independence between Confinement and
Chiral Sym Breaking ,Various Phase Structure of QCD can
be expected in Various Circumstances (T, u, H,...) .






