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Color Confinement and Chiral Symmetry Breaking (CSB)

are most important phenomena of  Nonperturbative QCD

Introduction : Confinement and Chiral Symmetry Breaking

Order parameter of Confinement: Polyakov loop ＜LP＞∝ e-Eq/T

Order parameter of CSB: Chiral Condensate ＜qq＞-

The relation between   

Confinement and CSB 

is not yet known 

directly from QCD.



Correlation between Confinement and CSB is suggested by 

Simultaneous Phase Transition of 

Deconfinement and Chiral Restoration.

F. Karsch, Lect. Notes Phys. (2002)

Chiral Condensate＜qq＞-Polyakov Loop＜LP＞

Color Confinement Chiral Symmetry Breaking

Lattice QCD results at finite temperature



Also, similar Coincidence between Deconfinement and Chiral Restoration

is found in Finite-Size lattice QCD.

In fact, Simultaneous Phase Transitions occur according to the Box Size. 

More on correlation between Confinement and Chiral Sym Breaking

Deconfinement

Chiral Restoration

Confinement

Chiral Sym. 

Breaking

Of course, Finite-Temperature Phase transition is also a kind 

of Finite-Size effect of Euclidean Lattice in temporal direction.

Small Volume LatticeLarge Volume Lattice

simultaneous 

Phase Transitions 

Confined!

Freedom!



The close relation between Confinement and CSB has been indicated 

in terms of Monopoles appearing in Maximally Abelian Gauge in QCD. 

By removing the Monopoles from the QCD vacuum, 

the confinement property and CSB are simultaneously lost. 
[e.g. Dual GL theory: H.S.,  S.Sasaki and H.Toki, NPB (1995), 

LQCD : O.Miyamura, PLB (1995), R.Woloshyn, PRD(1995). ] 

O. Miyamura

More on correlation between Confinement and Chiral Sym Breaking

Monopole world line in 

MA gauge In Lattice QCD 



A Geometrical explanation of simultaneous Confinement and CSB  
in Holographic QCD (the Sakai-Sugimoto model) at T = 0

Using D4/D8/D8-brane, massless QCD (quarks and gluons) can be constructed. 
Here, D4-brane gives color and Gluons and D8-brane gives flavor. 
Left (Right) Quarks appear at the cross point between D4 and D8 (D8bar).

T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113 (2005) 843.

D4-brane×NC

D8-brane×Nf   (L)

4-4

4-8

4-8
D8-brane×Nf   (R)

Index on D4 brane ( color )
Index on D8 brane ( flavor )

: quark (L)

: quark (R)

: gluon

10dim. Color degrees of freedom

Flavor degrees of freedom

K. Nawa, H.S.  and T. Kojo,  PRD75 (2007) 086003.



・SUSY is broken by the periodic/antiperiodic boundary condition of S1. (Witten 98)

・D4-brane is replaced by Curved Space of Gravitational Solution.

・Around the D4-brane, 10 dim. space-time disappear, that is, D4-brane leads  

Genus of 10 dim. space-time. This leads to linear confinement potential for quarks. 

Holographic construction of non-SUSY Yang-Mills theory 

with Gauge/Gravity correspondence

S1-compactified Nc D4-brane SURGA solution of D4 brane

xμ=(t, x, y, z)
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10-dim space-time
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D4-brane (u<u0) 

5-dim

5-dim
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D4×Nc

D8, D8×Nf

Gravitational  background 

D4-brane×N C

D8×N f

D8×N f

10dim. space time

D8

4-4

4-8

4-8

8-8

In Large Nc limit, D4-brane is extremely massive and is replaced by Gravitational 

background, under assumption of AdS/CFT (gauge/gravity) correspondence.

Chiral symmetry breaking is thus realized by the geometrical connection of D8 

and D8bar branes. … These considerations may suggest that chiral symmetry 

breaking and color confinement occur simultaneously.

D8, D8×Nf

K. Nawa, H. S.  and T. Kojo,  PRD75 (2007) 086003.

In Holographic QCD, Confinement and Chiral SB may occur simultaneously 

due to the “Genus” in 10 dim. Space-time created by large Nc D4-brane.



A possible Difference between Deconfinement and Chiral Restoration in QCD

~ controversial

Y. Aoki, Z. Fodor, S.D. Katz, 

K.K. Szabo, PLB643 (2006)
Light Quark Condensate

＜qq＞-

Polyakov Loop ＜P＞

Quark Confinemnet

Chiral Symmetry

Other Lattice QCD calculation

Strange quark condensate

＜ss＞-

Chiral Restoration：Tc≒151MeV

Deconfinement：Td≒176MeV

For 151～176MeV, 

Chiral Restored but Confined?

Don’t be so serious…



“Deconfinement and chiral symmetry restoration in an SU(3) gauge  theory  

with adjoint fermions”, F. Karsch, M. Lutgemeier, NPB550 (1999).

Lattice QCD calculation with Adjoint-Color Fermion

QCD with fundamental color fermion： Coincidence 

of Chiral transition and  deconfinement Tc≒Td 

Adjoint-color fermion：Chiral transition at 

much higher temperarture Tc ≒ 8Td

Umm… It is not ordinary QCD…

A Large Difference between Deconfinement and Chiral Restoration

in the case of Adjoint-Color Fermion



Holographic Construction of Massless 1+1 QCD at T = 0

Using D2/D8/D8-brane system, massless 1+1 QCD (quarks and gluons) can be 
constructed. Here, D2-brane gives color and Gluons and D8-brane gives flavor. 
Left (Right) Quarks appear at the cross point between D2 and D8 (D8bar).

D2-brane×NC

D8-brane×Nf   (L)

2-2

2-8

2-8
D8-brane×Nf   (R)

Index on D2 brane ( color )
Index on D8 brane ( flavor )

: quark (L)

: quark (R)

: gluon

10dim. Color degrees of freedom

Flavor degrees of freedom

Y. Nakagawa, K. Matsumoto and H.S.

1,0A

1~0x

1~0x



Holographic description of 1+1 Yang-Mills theory 

with Gauge/Gravity correspondence

S1-compactified Nc D2-brane SURGA solution of D2 brane



xμ=(t, x)
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＊
S6

u
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10-dim space-time

Genus appears around 

D2-brane (u<u0) 

7-dim
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・SUSY is broken by the periodic/antiperiodic boundary condition of S1. 

・D2-brane is replaced by Curved Space of Gravitational Solution.

・Around the D2-brane, 10 dim. space-time disappear, that is, D2-brane leads  

Genus of 10 dim. space-time. This leads to linear confinement potential for quarks. 



D2×Nc

D8, D8×Nf

Gravitational  background 

D2-brane×N C

D8×N f

D8×N f

10dim. space time

D8

2-2

2-8

2-8

8-8

Consider S1-compactified Large Nc D2-brane with Nf D8-D8-brane.

This system leads to non-SYSY 1+1 QCD at T = 0.

Like the Sakai-Sugimoto model, this holographic QCD leads to “Color 

Confinement”. Simultaneously, Chiral Symmetry is also spontaneously 

broken due to the connection (topological change) of D8 branes.

However, including 1/Nc higher order, CSB is no more realized in 1+1 dim.

D8, D8×Nf

Y. Nakagawa, K. Matsumoto and H.S.



1+1 QCD (Nf ≧ 2)
・Confinement is realized.
・Spontaneous Chiral Symmetry Breaking does NOT occur.
（Because of Coleman-Mermin-Wagner theorem：

In 1+1 space-time, massless scalar leads to IR instability 
and cannot appear, so that spontaneous symmetry 
breaking accompanying massless NG bosons NEVER occurs.  

N = 1 SUSY 1+3 QCD with Nf =Nc+1
・Confinement is realized.
・Spontaneous Chiral Symmetry Breaking does NOT occur.

Examples with Confinement but without Chiral Symmetry Breaking
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)(  ：QCD Dirac operator eigenvalue density

Zero-eigenvalue density ρ(0) of QCD Dirac operator

gives Chiral Condensate.

⇒ The essential modes for Chiral Sym Breaking are 

Low-lying Dirac modes.

※ The non-zero spectrum is symmetric due to 0}ˆ,{ 5 D

)()(ˆˆ
55 nnnnnn DD  

Banks-Casher Relation
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Let us consider Confinement in terms of Dirac modes. 



Previous study: Eigen-value distribution of QCD Dirac operator

b=5.6 (a=0.25fm),  64 

We Remove the contribution of 

Low-lying Dirac modes. 

(cf. Banks-Casher relation)


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IR
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Chiral Condensate is extremely reduced (only 2% remains)

after removing the low-lying Dirac modes.

02.0
qq

qq
IR

for mq~5 MeV



Previous study: Wilson Loop after removing low-lying Dirac modes (T=0)

Lattice QCD result of 

Wilson Loop and Inter-Quark Potential 

before/after the removal of low-lying Dirac modes 

Wilson Loop obeys the Area Law and 

the confining force is almost unchanged

even after the removal of low-lying Dirac modes,

which are responsible to chiral symmetry breaking. 

Wilson Loop Potential 

Without

low-lying Dirac modes 

Without low-lying 

Dirac modes original

original

S.Gongyo, T.Iritani, H.S., PRD86 (2012) 034510.



Previous study: IR-Dirac-mode-cut Polyakov Loop (finite T)

IR-Dirac-mode-cut Polyakov Loop
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Dirac spectral density

Without IR-Dirac modesPolyakov Loop 

Even after removing the low-lying Dirac modes, Polyakov loop remains to be 

zero, which means confinement phase and unbroken Z3-center symmetry.

on periodic lattice

T.Iritani, H.S., PTEP 2014 3 033B03.

Example in confinement phase



Thus, our lattice-QCD results indicated

negligible contribution of low-lying Dirac modes 

for confinement, while these modes are essential 

for chiral symmetry breaking.
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Main Dish !



Lattice QCD

)()(
)(

c

xiagA
NSUexU  



In lattice QCD, gauge degrees of freedom is described by 

Link-variable defining on a Link on the lattice. 

Gluon field is exponentiated into Link-variable.

x ̂x

)ˆ()()()()(   sVxUsVxUxU V †

Gauge transformation : Link-variable is sandwiched 

by the gauge functions on both edges of the link.



Setup: 

・ordinary square lattice with temporally odd number Nt （＜Ns ）
・normal periodic boundary condition for gluons

・Elitzur Th.：only gauge-invariant quantities have nonzero expectation value

Analytical Formula:  Dirac spectral representation of Polyakov loop 

LP : Polyakov Loop, n : Dirac eigenvalue， |n> : Dirac eigenmode

Result: small contribution of low-lying Dirac modes to Polyakov loop

2. Analytic Formula between Polyakov Loop and Dirac mode 

at any Temperature 





n

N

nP nUnL t |ˆ| 4
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Explicit form of Dirac eigen-value equation in lattice QCD 

Eigen-mode of Dirac operator in Lattice QCD

same as quark field

apart from an irrelevant 

global phase factor
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We introduce 

Link-variable operator         defined by the matrix element of

yxxUyUx ,ˆ)(ˆ
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Using link-variable operator, many notations are quite simplified:

ninD n̂ :Dirac eigenstate, Dirac eigenvalue Rn


x

N

c

N

P xUxUL tt

44
ˆtrˆTr :Polyakov loop


x

ctrTr :functional trace



NB: in the continuum limit of a → 0, Nt → ∞, 

any number of large Nt gives the same result.

Then, it is no problem to use the odd-number lattice.

t
Nt =3 case

O

O

For the simple notation, 

we take the lattice unit a=1 hereafter. 

Temporally Odd-Number Lattice

In this study, we use a standard square lattice with 

ordinary (nontwisted) periodic boundary condition for gluons.

But we consider temporally odd-number lattice,

where the temporal lattice size Nt is odd. (Nt < Ns)



Temporally Odd-Number Lattice

0)}1̂()4̂()({trˆˆˆTr 414414  

x
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t
Nt =3 case

O

Polyakov loop 

Closed Loops 

All the non-closed lines are gauge-variant

and their expectation values are zero.

In general, only gauge-invariant quantities 

such as Closed Loops and the Polyakov loop 

survive in QCD. (Elitzur’s Theorem)

Tr =0
gauge-variant



Temporally Odd-Number Lattice

NB: any closed loop needs even-number 

link-variables on the square lattice.

t
Nt =3 case

O

Polyakov loop 

Closed Loops 

In general, only gauge-invariant quantities 

such as Closed Loops and the Polyakov loop 

survive in QCD. (Elitzur’s Theorem)

All the non-closed lines are gauge-variant

and their expectation values are zero.



Temporally Odd-Number Lattice
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Nt =3 case
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On the temporally odd-number lattice, 

we consider the functional trace:
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color & spinor



Property on functional trace  

NB:                         consists of products of Nt link-variable 

operators, since the Dirac operator 

includes one link-variable operator in each direction      .
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In this functional trace                       , 

it is impossible to form a closed loop on the square lattice,  

because the total number of the link-variable, Nt, is odd. 

Almost all trajectories are gauge-variant & give no contribution.
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NB:                         consists of products of Nt link-variable 

operators, since the Dirac operator 

includes one link-variable operator in each direction      .
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Nt =3 case
Any closed loop needs 

even-number link-variables

on the square lattice.

The trace on -matrix 

also gives a constraint.
Gauge-variant!
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In this functional trace                       , 

it is impossible to form a closed loop on the square lattice,  

because the total number of the link-variable, Nt, is odd. 

Only the exception is the Polyakov loop.
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operators, since the Dirac operator 

includes one link-variable operator in each direction      .





4

1

)ˆˆ(
2

1ˆ




 UUD

1

4
ˆˆTr


 tN
DUI



The trace on -matrix 

also gives a constraint.

Nt =3 case
Any closed loop needs 

even-number link-variables

on the square lattice.

Gauge-invariant!



Therefore, in this functional trace                       ,

only the Polyakov-loop ingredient can survive:
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because the total number of the link-variable, Nt, is odd. 

Only the exception is the Polyakov loop.
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operators, since the Dirac operator 

includes one link-variable operator in each direction      .
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On the other hand, 

using the complete set of the Dirac eigen-states
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On one hand, we obtain

[T.M. Doi et al., PRD90 (2014) 09405; PRD92 (2015) 094004; PTEP 2016 (2016) 013B06.]
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Each Dirac-mode contribution specified by n can be 

individually calculated in actual lattice QCD simulations.

Comment: There is no cancellation between chiral-pair Dirac states, 

and             , because Nt - 1 is even andn n5 11
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Gauge trans. property:
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Each term is manifestly Gauge Invariant.
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NB: the sum of RHS can be expressed with Dirac eigenvalue     , 

Dirac eigenfunction , and temporal link-variable           as)(xn
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Here, the matrix element                   is generally nonzero for 

each Dirac mode, and does not include explicit Nt -dependence.

→The “counter factor” 1n
Nt -1 never arise from                 . 

As a remarkable fact, because of the crucial factor n
Nt -1, the 

contribution from small n region is negligibly small  in this sum.

nUn |ˆ| 4

(in comparison with other terms with large n)

・ If RHS were not a sum but a product, the small n region should have given an important  

contribution, i.e., a critical reduction factor, to the Polyakov loop. However, in the sum,    

contribution from the small n region is negligible.

Comments:

nUn |ˆ| 4

・ Even if 〈n|U4|n〉 behaves as δ-function δ(λ), the factor n
Nt -1 is still crucial, because of λδ(λ)= 0. 

In fact, without appearance of counter factor from 〈n|U4|n〉, the crucial factor n
Nt -1 leads to 

small contribution for low-lying Dirac modes.
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・ Even in the presence of a possible multiplicative renormalization factor for the Polyakov loop,  

the low-n contribution is negligible in this sum, relatively in comparison with other terms. 



・This relation is correct for any color number Nc and any gauge group.

・This is correct at any temperature and both confined/deconfined phases.

・This is correct regardless of presence or absence of dynamical quarks, 

although dynamical quark effects appear in Polyakov loop, Dirac   

eigenvalue distribution, and Dirac-mode matrix element.

・Then, this relation is applicable to finite-density QCD.

This relation obtained on temporally odd-number lattice is expected to 

hold in the continuum limit of a → 0, Nt → ∞, since any number of large 

Nt gives the same physical result. 

Comments:
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From this relation, the contribution of low-lying Dirac modes 

to the Polyakov loop is negligibly small, 

while the low-lying Dirac modes are essential for CSB.

Then, this analytical relation indicates no direct (one-to-one) 

correspondence between confinement and CSB in QCD.

Conclusion

Using actual lattice QCD calculations at quenched level, 

we confirm this analytical relation in both confined and 

deconfined phases, and also show the negligible contribution 

of low-lying Dirac modes to the Polyakov loop numerically. 

Lattice QCD calculation
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For detail, see T.M. Doi’s Talk



Setup: 

・ordinary square lattice with temporally odd number Nt （＜Ns ）
・normal periodic boundary condition for gluons

Analytical Formula:  Dirac spectral representation of Polyakov loop 

LP : Polyakov Loop, n : Dirac eigenvalue， |n> : Dirac eigenmode

Result: small contribution of low-lying Dirac modes to Polyakov loop

Local Summary: Analytic Formula between Polyakov Loop 

and Dirac mode at any Temperature 


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This subject will be mainly presented by T.M.Doi’s Talk.

3. Analytic Formula of Polyakov Loop Fluctuation with Dirac mode

near Tc

P.M. Lo, B. Friman, O. Kaczmarek, 

K. Redlich, C.Sasaki, PRD88 (2013) 074502.

Polyakov loop fluctuation is paid attention 

for an indicator of the QCD transition. 

T. M. Doi, K. Redlich, C. Sasaki and H.S., PRD92 (2015) 094004, 

“Polyakov Loop Fluctuations in the Dirac Eigenmode Expansion”. 

A Polyakov-loop fluctuation ratio 

Temperature

Scatter plot of Polyakov loop

Longitudinal

Transverse

Drastic Change around Tc



We derive Dirac-mode expansion formula for Polyakov loop fluctuations, 

and find a small contribution of low-lying Dirac modes to them.

3. Analytic Formula of Polyakov Loop Fluctuation with Dirac mode

Dirac mode representation of Polyakov loop fluctuation：

T. M. Doi, K. Redlich, C. Sasaki and H.S., PRD92 (2015) 094004, 

“Polyakov Loop Fluctuations in the Dirac Eigenmode Expansion”. 

Polyakov-loop fluctuation ratio

quark condensate

IR cut of Dirac modes

Lattice QCD result of a 

Polyakov-loop fluctuation ratio

plotted with IR cut of Dirac modes

in a confined phase.

By removing low-lying Dirac modes, 

quark condensate is rapidly reduced, 

but the Polyakov-loop fluctuation 

is almost unchanged.



4. Analytical Relation between Wilson loop and Dirac mode 

at zero-temperature
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Reference: H. S., T. M. Doi, T. Iritani, PTEP 2016 (2016) 013B06, Analytical 

Formulae of the Polyakov and Wilson Loops with Dirac  Eigenmodes in Lattice QCD. 
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TDUJ  ( T : even )We consider

・arbitrary square lattice  (Even number lattice is OK.)

・Elitzur Th.：only gauge-invariant quantities have nonzero expectation value

Wilson  loop :

Staple operator :
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On the other hand, using the complete set of the Dirac eigen-states
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Combining them, we obtain a relation for even T:

On one hand, we obtain for even T
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Because of the factor       in the sum, 

low-lying Dirac-mode contribution is to be small 

for the Wilson loop W, the inter-quark potential V(R) and 

the string tension σ, unless the extra counter factor 

appears from the matrix element                    .
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Thus, the string tension σ, or the confining force,

is expected to be unchanged by the removal of 

low-lying Dirac-mode contribution.



Setup:

・Arbtitary square lattice

Analytic formla of Wilson loop with Dirac modes

Wilson  loop :

n : Dirac eigenvalue， |n> : Dirac eigenmode

Result: small contribution of low-lying Dirac modes to 

the string tension or the quark confining force
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Local Summary: Analytical Relation between 

Wilson loop and Dirac mode



The above formulae are mathematically valid.

Because, we have just used the Elitzur theorem 

and the identity of completeness:

However, one may wonder the doubler in the use of 

simple Lattice Dirac operator:
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5. Formula for Wilson, Clover, Domain-Wall fermions

Let us remove the doublers !

With T. M. Doi



Setup: 

・ordinary square lattice with Nt =4l+1 （＜Ns ）
・normal periodic boundary condition for gluons

・Elitzur Th.：only gauge-invariant quantities have nonzero expectation value

Analytic Formula: Dirac spectral representation of Polyakov loop 

LP : Polyakov Loop, n : Dirac eigenvalue， |n> : Dirac eigenmode

Result: small contribution of low-lying Dirac modes to Polyakov loop

5-1. Formula for Wilson and Clover fermions
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Clover fermion: O(a)-improved Wilson fermion



Wilson and Clover fermions

Wilson Fermion Kernel in lattice formalism:

mUU
a

r
UU

a
K  





4

1

)2ˆˆ(
2

)ˆˆ(
2

1





Clover Fermion Kernel in lattice formalism:
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Clover fermion: O(a)-improved Wilson fermion
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Here, Field Strength is defined as Clover-type:
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Consider the transformation of fermion field variables:
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Details

Derivation of O(a)-improved Wilson fermion: Clover fermion



Fermion generating functional up to O(a):
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Clover fermion action: O(a)-improved Wilson fermion

cf. Wilson fermion removes doublers but includes O(a) error: 
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Details

Derivation of O(a)-improved Wilson fermion: Clover fermion



Lattice Clover fermion: O(a)-improved Wilson fermion

Fermion Kernel of Clover fermion:

R )(aOc

Clover Fermion Kernel in lattice formalism:
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Here, Field Strength is defined as Clover-type:
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Details



Formula for Wilson and Clover fermions

WIlson (or Clover) Fermion Kernel in lattice formalism:
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cf. Appendix of T. M. Doi, H. S., T. Iritani,  
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The fermion kernel K includes many terms. However, to form Loop,

you have to select only U4 term in all 2l K in the Trace J.



Formula for Wilson and Clover fermions

WIlson (or Clover) Fermion Kernel in lattice formalism:
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cf. Appendix of T. M. Doi, H. S., T. Iritani,  

PRD90 (2014) 094505. 

The fermion kernel K includes many terms. However, to form Loop,

you have to select only U4 term in all 2l K in the Trace J.
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Thus, J is found to be proportional to Polyakov loop.

NB: At this stage, non-commutable nature disappears.

By taking Tr, all the odd 4 terms vanishes:
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On the other hand, using the eigenmode of 

→ Similar arguments are applicable.

Formula for Wilson and Clover fermions

On one hand, J is proportional to Polyakov loop.

Then



Setup: 

・ordinary square lattice with Nt =4l+1 （＜Ns ）
・normal periodic boundary condition for gluons

Analytic Formula: Dirac spectral representation of Polyakov loop 

LP : Polyakov Loop, n : Dirac eigenvalue， |n> : Dirac eigenmode

Result: small contribution of low-lying Dirac modes to Polyakov loop

Local Summary: Formula for Wilson and Clover fermions
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Clover fermion: O(a)-improved Wilson fermion
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Setup: 

・ordinary square lattice with Nt =4l+1 （＜Ns ）
・normal periodic boundary condition for gluons

・Elitzur Th.：only gauge-invariant quantities have nonzero expectation value

Analytic Formula: Dirac spectral representation of Polyakov loop 

LP : Polyakov Loop,  : Dirac eigenvalue， |n> : Dirac eigenmode

M0: large DW mass of O(1/a)

Result: small contribution of low-lying Dirac modes to Polyakov loop

5-2. Formula for Domain-Wall fermion 

Domain-Wall (DW) fermion: lattice fermion with “exact” chiral symmetry 



5th dim

Eigenmode in 5th dim

Domain-Wall (DW) fermion: lattice fermion with “exact” chiral symmetry 

By introducing 5th dimension, “exact” chiral symmetry is realized.
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: very large1
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55 ,0 Nx Chiral zero mode localized around

5th dim

Eigenmode in 5th dim

Mass in 5th dim

5x
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0 5N
52N

Left-handed

Right-handed

By introducing 5th dimension, “exact” chiral symmetry is realized.

Domain-Wall (DW) fermion: lattice fermion with “exact” chiral symmetry 



Fermion Kernel of DW fermion:

R )(aOc

DW Fermion Kernel in lattice formalism:
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Dirac term Wilson term Clover term 5th-dim term

Only kinetic and mass terms in 5th dim.

In 5th dim, No coupling 

with Gluons (Link-variables)

5th dim has only kinetic and mass terms, so that it is solvable in 5th direction.

The extra degrees of freedom in 5th dim. is integrated out in the generating 

functional. The UV divergence can be removed by Pauli-Villars regularization.

Domain-Wall (DW) fermion: lattice fermion with “exact” chiral symmetry 
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DW Fermion 5-dim Kernel in lattice formalism:
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The fermion kernel K includes many terms. However, to form Loop,

you have to select only U4 term in all 2l K in the Trace J.
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The fermion kernel K includes many terms. However, to form Loop,

you have to select only U4 term in all 2l K in the Trace J.
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NB: At this stage, non-commutable nature disappears.
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By taking Tr, all the odd 4 terms vanishes:
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Thus, J is found to be proportional to Polyakov loop.

Formula for Domain-Wall (DW) fermion

DW Fermion 5-dim Kernel in lattice formalism:
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On the other hand, using the eigenmode of 

Formula for Domain-Wall fermion

5-dim kernel eigenvalue  ≒ 4-dim physical Dirac eigenvalue 
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On one hand, J is proportional to Polyakov loop.

Then
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Setup: 

・ordinary square lattice with Nt =4l+1 （＜Ns ）
・normal periodic boundary condition for gluons

Analytic Formula: Dirac spectral representation of Polyakov loop 

LP : Polyakov Loop,  : Dirac eigenvalue， |n> : Dirac eigenmode

M0: large DW mass of O(1/a)

Result: small contribution of low-lying Dirac modes to Polyakov loop

Local Summary: Formula for Domain-Wall fermion 

Domain-Wall (DW) fermion: lattice fermion with “exact” chiral symmetry 



Discussion

It seems natural to consider No direct one-to-one 

correspondence between confinement and chiral 

symmetry breaking in QCD. Actually, independent 

of quark mass, confinement is realized. In fact, even 

without chiral symmetry, color confinement occurs.

How about “coincidence” of Deconfinement and Chiral 

Restoration temperatures ?

In general, around the (pseudo)critical point, all the physical 

quantities can be largely changed, according to a drastic 

change of order parameter. 

If there is some independence between Confinement and 

Chiral Sym Breaking ,Various Phase Structure of QCD can 

be expected in Various Circumstances (T, , H,…) .



Thank you!


