
Temperature effects on superfluid phase transition in

Bose-Hubbard model with three-body interaction

Introduction

In optical lattices the behaviour of contained atoms is governed

mainly by two-body interactions. However, there are experimental

indications that also three-body interactions should be taken into

account [1, 2]. In this work we present the finite temperature phase

diagram of strongly interacting lattice bosons in the framework of

the Bose-Hubbard model and study its dependence on the three-

body interactions strength. In the calculations we used the mean-

field approximation and the resolvent method, which is based on

the contour integral representation of the partition function [3].

The model

To describe an ultracold gas of bosons in an optical lattice, the

Bose-Hubbard model, which successfully captures Mott-insulator-

superfluid phase transition [4], is utilized. The Hamiltonian in

second-quantized form is given by:

ĤBH = −J
∑

{ij}

(â
†
i âj + â

†
jâi)−

∑

i

µn̂i +
∑

i

V̂i,

where:

• âi and â
†
i are bosonic creation and annihilation operators at the

i-th site of the lattice,

• n̂i = â
†
i âi is the particle number operator,

• Jij is the hopping matrix element,

• µ is the chemical potential.

The summation index i runs from 1 to N - the number of the lattice

sites. The Vi term contains two- and three-body interactions and is

given by:

V̂i =
U

2
n̂i(n̂i − 1) +

W

6
n̂i(n̂i − 1)(n̂i − 2),

where U and W measure two- and three-body repulsive interaction

strength.

The method

To describe the superfluid phase of the system under study we intro-

duce the order parameter Φi = 〈âi〉. The mean-field approximation

leads to the following Hamiltonian:

Ĥ =
∑

i

[

−JzΦ(âi + â
†
i − Φ)− µn̂i + V̂i

]

,

which is the sum of local terms. Since the corresponding statisti-

cal sum Z factorizes, we can omit the index i. One can split the

Hamiltonian into two parts:

Ĥ0 = V̂ − µn̂,

which in the strong coupling regime is considered as the unper-

turbed Hamiltonian and

Ĥ ′ = −JzΦ
(

â + â† − Φ
)

,

which plays role of the perturbation. Next, we express the sta-

tistical sum Z by the resolvent of the full mean-field Hamiltonian

(z − Ĥ)−1:

Z =

∫

Γ

dz

2πi
e−βzTr (z −H)−1,

which can be expanded in the series:

Z = Z̃0 − β

1
∫

0

dg

g

∫

Γ

dz

2πi
e−βzTr

∞
∑

n=1

[(z − Ĥ0)
−1gĤ ′]n.

Figure 1: The plot of the critical surface separating the disordered (below the surface) and superfluid state (above the

surface) for the Bose–Hubbard model with three-body interaction in the three-dimensional plot defined by the T – J
– µ variables. The three-body interaction parameter was set to W/U = 0.4.

The contour of the integration Γ surrounds all singularities of the

resolvent. In our case this expansion is of the form:

Z = e−βJzΦ2
(

Z0 + Z2Φ
2 + Z4Φ

4 + ...
)

,

where

Z0 = Tr e−βĤ0 =

∞
∑

n=0

e−βEn

is the partition function of the unperturbed Hamiltonian with energy

levels given by

En = U
2
n(n− 1) + W

6
n(n− 1)(n− 2)− µn

and

Z2 = −βJ2z2
∞
∑

n=0

e−βEn

(

n
En − En−1

+ n + 1
En − En+1

)

.

Due to its complexity, we do not write the fourth order term explicitly.

In the resolvent method the calculation of Zk terms in the partition

function expansion is divided into two stages:

• Calculation of the trace

• Calculation of the contour integral

Both steps do not require advanced computations, which make the

resolvent method very efficient. The detailed calculations can be

found in [5].

Phase Diagram

In order find the finite temperature phase diagram of the correspond-

ing system, one needs to calculate the free energy f = −1/β lnZ .

The expansion of the free energy up to the fourth order of the order

parameter has the form:

f =f0 +

(

Jz −
1

β

Z2

Z0

)

Φ2

−
1

β

(

−
Z2
2

2Z2
0

+
Z4

Z0

)

Φ4,

where f0 = −1/β ln Z0. In Landau theory, at a point of the phase

transition the coefficient in front of Φ2 vanishes, which yields to the

following equation for the critical line:

zJ =

∞
∑

n=0
e−βEn

∞
∑

n=0
e−βEn

(

n+1
En+1−En

− n
En−En−1

)

.
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Figure 2: Phase diagram of the Bose–Hubbard system showing evolution of the Mott lobes for several values of the

three body interaction W/U = 0, 0.2, 0.4 (panel a, b and c, respectively) in the plane defined by the chemical

potential µ and the tunnelling parameter J (the on-site interaction U serves as an energy scale) for several values of

the temperature (kT/U = 0, 0.1, 0.15, 0.20, curves from the bottom to the top).

The above equation divided by the two-body interaction strength U
defines a hyper-surface in the space of the following parameters:

• The reduced temperature kT/U and chemical potential µ/U

• The dimensionless hopping term J/U and three-body interaction

strength W/U

Figure 1 contains the plot of the critical surface for a fixed value

of the parameter W . As one can see, the finite temperature di-

lutes the Mott lobes and diminishes the superfluid phase. Figure

2 presents the evolution of the insulating Mott lobes for increas-

ing temperature and various choices of the three-body interaction

strength W/U . As it increases, the subsequent Mott lobes widen.

Conclusions

We have investigated the effect of the three body interactions

on the Bose-Hubbard model using both the mean field approach

to the on-site hopping term and the resolvent method – which

turned out to be very efficient method for calculation of the par-

tition function. Subsequently we have found the phase diagram

and depicted its dependence on various parameters of interest.
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