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H I G H L I G H T S

� Derivation of a depth-dependent porosity relation below a fluid–porous interface.
� Assumption is based on spheres, randomly packed as a porous medium.
� Validation of relation by non-invasive laser method and numerical simulations.
� Comparison of the results with literature data on biofilm porosity.
� Showing effect of variable porosity on solute concentration profile in a biofilm.
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a b s t r a c t

The correct quantification of porosity is essential in all studies pertaining to porous media. A host of
existing works employs a constant, bulk value for porosity, even when the porous sample is attached to a
free fluid. Since the volume fraction of the solid matrix near the interface region differs from that in the
core, the porosity undergoes a spatial variation. Here we present a novel relation for the porosity as a
function of depth below the interface, using the concept of surface roughness applied on the classical
definition of open porosity. This relation has been verified by computational modeling as well as non-
invasive laser experiments. It has been shown that this depth-dependent porosity relation applies also to
a non-granular porous layer such as a biofilm.

& 2014 Published by Elsevier Ltd.

1. Introduction

Porosity has been known to be the most significant property
describing a porous medium. Moreover, its correct quantification
is essential for flow, heat and mass transfer parameters such as
permeability, tortuosity, thermal conductivity and diffusion coefficient.

In a variety of situations, a porous medium has a boundary with
its non-porous surrounding such as a free fluid. Examples include
microbial mats (Wieland et al., 2001), biofilms (Lewandowski,
2000), Rayleigh–Benard convection in fluid permeating a porous
medium (Howle et al., 1993), monochromatic surface waves across
fluid–porous interfaces (Albers, 2006), air-grain flows in granular

media (Sandnes et al., 2010). In such cases, the porosity undergoes
a spatial decrease due to increase of solid matrix density or
packing density with depth. This fact has been already pointed
out in previous studies (Ochoa-Tapia and Whitaker, 1995; Goyeau
et al., 2003; Goharzadeh et al., 2005), however, a functional
relationship for the depth-dependent porosity at fluid–porous
interfaces has remained illusive.

Here we present a novel porosity–depth relation by applying
the classical definition of open porosity to each thin slice of the
porous layer below the fluid–porous interface. This relation is
found to be applicable to granular as well as naturally growing
porous layers.

To validate this relation, rigorous experimental and numerical
investigations were performed. The experiments were composed
of non-invasive planar laser induced fluorescence (PLIF) technique
to visualize void and solid fractions below the interface. Solid
matrix was considered to be mono-sized spherical glass beads.
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In the numerical approach, a free surface of randomly packed solid
spheres was first generated. The porous layer underneath the free
surface was then split into thin slices which were used to extract
void and solid matrix fractions. Both experimental and numerical
results agreed well with the porosity–depth relation presented.

Finally, the significance of inclusion of a depth-dependent
porosity has been demonstrated on the example of oxygen
concentration profile predicted for a biofilm.

2. Development of a new porosity–depth relation

We consider a cubic container of volume L3 filled with a
random packing of Nsmall solid spheres of diameter d having an
interface with the overlaying fluid layer. Following previous
studies (Beavers and Joseph, 1967; Neale and Nader, 1974;
Goharzadeh et al., 2005) the position of the nominal fluid–porous
interface, y¼0, is defined as the location of the horizontal tangent
to the perimeter of the uppermost sphere (Fig. 1). We introduce a
transition layer with the thickness δ understood as the layer
within which the porosity falls from unity at the fluid–porous
interface to its bulk value in the porous core. To calculate the
depth-dependent porosity, the transition layer is divided into an
ensemble of M subsequent tiny horizontal slices of thickness,
Δ¼ L=N, occupied partially by fluid and partially by solid segments
(top image in Fig. 1). The open porosity of each tiny horizontal slice
can be given by

φm ¼ 1� 1

L2Δ
∑
p

i ¼ 1
Vi ð1Þ

where Vi is the volume of each sphere segment and p is the
total number of segments in a given slice m. The sum in
Eq. (1) generally represents a trapezoidal volume similar to the
so-called Tower of Hanoi (Buneman and Levy, 1980; Wolfram,
2011). It can be shown (see results section) that in a random
packing of large number of spheres, the thickness Δ corresponds to
the vertical distance which separates any two vertically closest
spheres. With other words at a given depth there would exist only
one sphere and the trapezoidal volume fades to the volume of a
spherical cap V(y) (right image in Fig. 1). Consequently, Eq. (1)
converts to

φðyÞ ¼ 1�N

L3
VðyÞ ð2Þ

with

VðyÞ ¼ πd3
1
2

y
d

� �2
�1
3

y
d

� �3
� �

: ð3Þ

We recall that the volume fraction of solid spheres to the
container volume can be given by

1�φb ¼
N
πd3

6
L3

: ð4Þ

Hence, upon substitution of Eq. (3) in Eq. (2) and elimination of
N=L3 from Eq. (2) using Eq. (4), one obtains the depth-dependent
porosity relation as

φðynÞ ¼ 1�ð1�φbÞ 3yn2�2yn3
h i

: ð5Þ

Here φb represents bulk porosity and yn ¼ y=d. The term 1�φb

provides a universal constant which ranges from 0.609 to 0.641 for
poured and close random packing (Dullien, 1992). The above
relation has been derived under the premise that the solid spheres
are randomly packed, provide point of contact with their neigh-
boring ones, generate interconnected voids and are heavier than
the saturating fluid.

3. Numerical and experimental methods

3.1. Numerical determination of porosity variation

To generate a random packing of N mono-sized spherical solid
beads in a given cubic box of size L, a standard algorithm
developed in Princeton University has been utilized (Skoge et al.,
2006; Princeton, 2011). The Princeton code has been modified by
us to construct a porous layer with a free interface with the fluid
on top. To do so, we numerically remove the beads from the top of
the box until we reach those beads with their centers below y¼0
as shown in Fig. 2.

The constructed porous layer has the thickness L=2þd=2.
Knowing the exact coordinates of the solid beads and voids, the
porosity of each horizontal cross-sectional stripe of thickness Δ –

representing the porosity at a given depth – is given by
ϕi ¼ Avoid � Δ=Atotal � Δ. Hence, at any given depth the porosity can
be extracted from the void to total area fraction. The repetition of
this procedure for the entire whole porous layer leads to a
numerically driven depth-dependent porosity relation.

Fig. 1. A porous layer of solid spheres having a free interface with the upper fluid layer (bottom left image); any, sufficiently tiny, horizontal slice of thickness Δ (top image)
will be occupied partially by solid and partially by void or fluid. Porosity at any depth is related to the volume of the segments confined within Δ constructing a spherical cap
(bottom right image).
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3.2. Experimental determination of porosity variation

The porosity variation has been measured using the PLIF
technique as described in the following manner. A 200 mm high
transparent rectangular container with a cross section area of
96�96 mm2 was filled with DuranTM glass beads of diameter
6.5 mm to the height of 75 mm (Fig. 3). The packing was saturated
with a mixture of Dow Corning silicon oils DC 550 and DC 556
with a volume fraction of 29% and 71%, respectively, leading to an
optimal refractive index match between the glass beads and the
fluid (n¼1.471). A continuous-wave Nd-YAG laser (Laser Quantum
Ventus, 532 nm, 1.5 W) was used to illuminate a horizontal cross
section (green plane in figure) with a wavelength suitable for the
absorption band of the dye (500–600 nm). As dye, Nile Red 20 μg/l
was applied. Using a CCD camera (PCO 1600) mounted on top of
the container the entire cross section (void and solid areas) was
captured. The rectangular container has been mounted on a linear
positioning system with a resolution of 10 μm to adjust its vertical
position with respect to the horizontal laser sheet. The laser sheet
was located above the free surface (porosity equal 1). The
container was elevated until the first evidence of the uppermost

sphere appeared in the image as a black dot. This position was
experimentally considered as the interface for the corresponding
system. Then, the container was elevated at constant increments
of 0.5 mm to acquire depth-dependent images for porosity
determination.

The 2D images were digitalized using the Matlab image
analysis tool with standard algorithm. Briefly speaking, the algo-
rithm consists of the following steps: (i) applying a median filter
for removal of small granular artefacts, (ii) adjusting the contrast,
(iii) subtracting background light from each image, and finally (iv)
constructing binary images, in which the void and solid areas are
digitalized. The porosity as a function of depth was obtained in the
same manner discussed above.

The details of the samples taken in the computational and
laboratory experiments are summarized in Table 1.

4. Results and discussion

An optimal random sphere packing is reached when only one
sphere center ordinate is found at a given depth (Skoge et al.,

Fig. 2. The random sphere packing created with the numerical code (Skoge et al., 2006). In the example shown here, the system initially consisted of N¼1000 spheres
(image a), from which approximately half were removed to generate a free, porous interface with the fluid-only layer above (image b).

Fig. 3. Schematics of the setup for the glass beads experiments. After matching the refractive indices of the fluid and glass beads, the laser light (green plane in the left
image) can illuminate the entire container cross section, in which the void areas can be differentiated from the solid ones (right image). Black circles denote cross sections of
intersected spheres. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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2006). To find the sufficient number of solid spheres ensuring this
goal, N has been stepwise increased as N¼ 103; 104; 105 and
2� 105. As depicted in Fig. 4 a good linear distribution of sphere
center depth coordinate versus sphere number has been reached
already by N¼ 100 000. However, to be on the secure side, for all
computations performed in this study N was set up to 200 000.
With this N the dimensionless diameter of each solid sphere
would read as d¼0.0183.

In Fig. 5 the results of the numerical (first row) and experi-
mental (second row) investigations are summarized. The images
in the first three columns refer to cross-sections at different
depths below the interface. From each image one can obtain the
porosity at the given depth. The differently sized black circles in
each image indicate the intersected spheres at the corresponding
depth. Starting from the interface (y¼0) and analyzing the cross-
section images we reach to a depth, below which no more changes
in the porosity can be observed, yielding the thickness of the
transition layer δ.

In the experiments with the glass beads the transition layer
thickness amounted to δ� 6:5 mm which is equal to the diameter
(d) of the glass beads used. Similarly, the dimensionless transition
layer thicknesses in the numerical simulations were δE0.1, 0.05,
0.023 and 0.0183, equivalent to the dimensionless diameter of
generated solid spheres. Hence, it can be deduced that transition
layer thickness correlates well with the diameter of the grain size
used. This finding confirms the predictions of Goharzadeh et al.
(2005). The diagrams in the fourth column of Fig. 5 show the
numerically and experimentally determined porosity variation
(symbols) versus the analytical prediction from Eq. (5) (solid line).
The latter corresponds to the right ordinate, while the former
refers to the left ordinate. Obviously, the analytical prediction best
describes the porosity variation within the transition layer and
could be used as a standard relation when the solid matrix is
composed of mono-sized spheres.

With Eq. (5) at hand, it is worth examining whether or not this
relation could be applied to non-granular porous layers. To do this,

we take the biofilm studies of Lewandowski (2000) and Zhang and
Bishop (1994a, 1994b). Using micro-slicing technique, these
authors have characterized spatial distribution of biofilm proper-
ties such as porosity. The data pertinent to the porosity–depth of
these studies have been plotted in Fig. 6 along with the ones
predicted by Eq. (5). Note that the meaning of yn in Eq. (5) for the
biofilm is y=δ in which δ represents the transition layer thickness.
The good agreement between predicted and the published, experi-
mental porosity profiles underlines the applicability of our finding
to the porosity variation within a biofilm. The reason for this
agreement can be based on the following fact. As mentioned
earlier, the optimal number of solid spheres ensuring the best
results was found to be N¼ 200 000. Therefore, it is plausible to
assume that such a large random configuration of spheres with a
thin transition layer resembles well with the fluffy layers and
random nature of a biofilm. Because the porosity–depth relation
did not alter significantly upon increase of N up to 200 000, the
relation can be regarded as valid for biofilm too.

At this point, it is interesting to see the effect of porosity
variation on the interfacial mass and heat transfer phenomena. As
an example, we take the diffusion of a solute from a fluid layer into
a biofilm with a constant sink. Following Beyenal and Lewandowski
(2005) the one-dimensional, steady-state diffusion-reaction in the
biofilm can be expressed as

∂
∂yn

1

T2

∂Cn

∂y

� �
¼ ð1�φÞ Vn

mC
n

Kn

mþCn
: ð6Þ

The dimensionless quantities Cn, yn, Vn

m and Kn

m denote concentra-
tion, depth, rate constant and saturation constant, respectively, and
are normalized with Cn ¼ C=C0, yn ¼ y=δ, Vn

m ¼ Vmδ
2=D0C0 and

Kn

m ¼ Km=C0 in which C0 is the concentration at the surface of the
biofilm and D0 is the free solution diffusion coefficient. Furthermore,
T represents the tortuosity and is given by T2 ¼ 1�0:77 ln φ
(Matyka et al., 2008). The corresponding boundary conditions were
set as C¼1 and ∂C=∂y¼ 0 at the surface and bottom of the biofilm,
respectively. The parameters were taken as Kn

m ¼ 0:1 and Vn

m ¼ 1
from the pertinent literature (Beyenal and Lewandowski, 2005).

It should be noted that by Eq. (6) the biofilm has been treated
as a continuum with averaged physical properties at each depth.
One may also consider the biofilm as a porous medium and
perform an averaging procedure similar to that carried out by
Valdés-Parada et al. (2006, 2007).

Obviously, the choice of porosity, a constant or a depth-
dependent one, will have a direct influence on the concentration
distribution obtained from Eq. (6) within the transition layer. This
difference has been demonstrated in Fig. 7.The predictions show
that concentration profiles are significantly different and the
solute penetrates much deeper into the biofilm when taking
porosity variation into account. A similar trend has been also
reported for homogeneous and stratified biofilm by Beyenal and
Lewandowski (2005).

Finally, a note should be made to the classical study of Carman
et al. (1937) in which he derived the relation:

φ¼ 1�4
ffiffiffi
2

p

3
d
D

� �2

ð7Þ

for the bulk porosity of pairwise staggered spheres (of diameter d)
placed in a tetrahedron arrangement inside a cylindrical tube of

Table 1
Sample specifications used in numerical and experimental setups.

Sample Generation mode Material d N

I Numerical Solid sphere 0.1/0.05/0.023/0.0183 103/104/105/2�105

II Experimental Spherical glass beads 6.5 mm 2961

Fig. 4. Sphere center ordinate as a function of the sphere number. The perfect
linear trend represented by N=100000 indicates the fact that the center ordinate of
each sphere is vertically shifted with respect to all others, i.e. one sphere center at a
given depth.
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diameter D. He simplified his relation to φ¼ 0:528 for D=d¼ 2. This
value can also be obtained as a special case of Eq. (2) when taking
N¼2, L3 ¼ hπD2=4, and V ¼ πD3=6, leading to φ¼ 0:529 for the
porosity of a cylindrical segment of height h (compare with Fig. 8,
cf. Carman et al., 1937).

5. Conclusions

We derived analytically a porosity–depth relation below the
interface between a porous layer and a clear fluid on top. To verify
the relation, we performed numerical and laboratory experiments.
In the numerical part a porous layer was constructed by random
packing of mono-sized spheres with a free interface. By knowing
the exact coordinate of the spheres and voids, the porosity of each

three dimensional horizontal stripe of infinitesimal thickness was
calculated for different depths. In the experimental part, a non-
invasive planar laser induced fluorescence technique was used to
visualize void and solid fractions within the aforementioned three
dimensional stripes. Both data sets obtained from numerical and
experimental investigations agreed well with those predicted by
the analytical relation. Next, we showed that this relation may
even be applied to describe the porosity variation in non-granular
porous layers such as biofilms. Furthermore, the impact of depth-
dependent porosity was exemplified by the diffusion of a solute
from a fluid layer into a porous layer underneath with a constant
sink. Finally, we showed that the classical study of Carman for the
porosity of pairwise staggered spheres in a tetrahedron arrange-
ment can be derived as a special case of the porosity–depth
relation introduced in this study.

Fig. 5. Numerically packed spheres: (a) the differently sized circles indicate the intersected spheres at different depths; (b) same for lab experiments with glass beads;
images in the right column show the porosity as a function of depth within the transition layer. Solid lines denote the trend predicted by Eq. (5) while symbols refer to
computer and lab experiments.

Fig. 6. Comparison of depth-dependent porosity predicted from Eq. (5) (solid line)
with experimental porosity measurements within a biofilm (symbols). The filled
red square symbols are from Lewandowski (2000) while the others are taken from
Zhang and Bishop (1994a, 1994b). Here, δ represents the transition layer thickness
of the biofilm. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)

Fig. 7. Concentration profiles predicted with uniform porosity and depth-depen-
dent porosity.
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