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Hydraulic tortuosity in arbitrary porous media flow
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Tortuosity (T ) is a parameter describing an average elongation of fluid streamlines in a porous medium as
compared to free flow. In this paper several methods of calculating this quantity from lengths of individual
streamlines are compared and their weak and strong features are discussed. An alternative method is proposed,
which enables one to calculate T directly from the fluid velocity field, without the need of determining streamlines,
which greatly simplifies determination of tortuosity in complex geometries, including those found in experiments
or three-dimensional computer models. Based on numerical results obtained with this method, (a) a relation
between the hydraulic tortuosity of an isotropic fibrous medium and the porosity is proposed, (b) a relation
between the divergence rate of T with the system size at percolation porosity and the scaling of the most probable
traveling length at bond percolation is found, and (c) a range of porosities for which the shape factor is constant
is identified.
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I. INTRODUCTION

Investigation of transport through porous media is of
paramount importance in many areas of science and engi-
neering. One of the main problems is to find out how the value
of permeability, which synthetically describes how the flow
is retarded by the porous medium structure, can be related to
some more fundamental, well-defined parameters determined
solely by the geometry of the medium, as such relation could
be used, for example, to fabricate materials of desired physical
properties.

One of the most well-known theories of this kind was
developed by Kozeny and later modified by Carman [1]. In
their approach a porous medium is assumed to be equivalent
to a bundle of capillaries of equal length and constant cross
section. These assumptions lead to the semiempirical Kozeny-
Carman formula [1–3],

k = ϕ3

βT 2S2
, (1)

which relates the permeability (k) to four structural parameters:
the porosity ϕ, the specific surface area S, the hydraulic
tortuosity T , and the shape factor β. In this equation ϕ is
a dimensionless quantity defined as the fraction of the porous
sample that is occupied by pore space (0 < ϕ < 1), S equals
the ratio of the total interstitial surface area to the bulk
volume, β is a constant characteristic for a particular type of
granular material, and T is a dimensionless parameter defined
as

T = 〈λ〉
L

� 1, (2)

where 〈λ〉 is the mean length of fluid particle paths and L is the
straight-line distance through the medium in the direction of
macroscopic flow. Equation (1) has been found to agree well
with experimental results for random packs of monodisperse
granules (e.g., spheres or well-sorted and rounded sands).

The Kozeny-Carman approximation of a porous medium
can be used to model also other types of transport (e.g.,
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diffusion or electric current). This observation resulted in
introducing several distinctive, experimentally measurable
quantities that in the capillary approximation can be readily
linked with the tortuosity of the capillaries as given by Eq. (2).
In this way the term “tortuosity” has been overloaded with
several essentially different meanings [4], as depending on the
context it can refer not only to hydraulic, but also geometric [5],
diffusional [6–8], electrical [7,9–11], thermal [12], acoustic
[11], or streamline [13,14] tortuosity, with no clear consensus
on the relation between them. Besides, in the literature different
quantities, including T −1, T −2, and T 2 [2–4] have also been
called “tortuosity.”

While the permeability in the Kozeny-Carman theory
depends on four structural factors: porosity, specific surface
area, a shape factor, and a hydraulic tortuosity, until recently
only the first two of them could be measured in nontrivial cases,
and only porosity could be measured relatively easily. Carman
himself attempted to estimate hydraulic tortuosity by injecting
dye into a bed of glass spheres and concluded that T ≈ √

2 [1].
However, in practice only the product βT 2 (known as the
Kozeny constant κ) could be determined in nontrivial experi-
mental setups, which left the shape factor and hydraulic tortu-
osity as essentially indeterminate quantities. This observation
led several researchers to ponder whether hydraulic tortuosity
really exists as a fundamental attribute of the pore space or
whether it is just a “fudge factor,” an adjustable parameter
used to fit the model to the experimental data [3,10]. In spite
of these difficulties, diffusional and electrical tortuosities are
one of the basic parameters commonly used to characterize real
porous media in such diverse areas as medicine [15], marine
biology [6], or advanced materials [16], and the hydraulic
tortuosity remains a key concept of many advanced theories
(e.g., the effective medium approximation [2,17]). Moreover,
modern technology has made it possible to determine the fluid
velocity field in quite complex geometries both experimentally
[18] and numerically [13,14,19–21]. This, at least in principle,
enables one to determine flow streamlines and hence renders
the hydraulic tortuosity a measurable quantity.

At this point, however, there appears an unexpected prob-
lem. A textbook recipe requires one to calculate the hydraulic
tortuosity as an “average path of fluid particles through the
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porous medium” [2] without specifying what sort of averaging
is actually meant. For example, is it to be taken over the whole
volume or over a cross section, and in the latter case—are all
cross sections equivalent? Should the average be weighted and
how? Ambiguity in the definition of T was noticed already
by Bear [2], who remarked that the average pathlines could
be obtained either by averaging the pathlines of all fluid
particles passing a given cross section of the medium at a
certain instant of time (geometrical approach) or during a given
period of time (kinematical approach). Bear himself preferred
the geometrical approach, but he never explained how his
tortuosity tensor, which is a macroscopic quantity, could be

calculated from microscopic flow streamlines. Clennell [4]
gave several convincing arguments in favor of the opinion that
the hydraulic tortuosity should be calculated as a kinematical
average in which the pathlines are weighted with fluid fluxes.
However, until very recently a lack of precision in the definition
of T was not regarded as a problem, as this quantity was
considered to be too difficult to be calculated in a general
case, and most attempts in this direction concentrated on
rather simple models where the results did not depend on
the averaging procedure. Under these circumstances, when in
recent years it became possible to simulate flows numerically
with unprecedented accuracy in complex geometries in which

FIG. 1. (Color online) Normalized velocity field (u/umax) for two highly porous systems, ϕ = 0.95 (left) and ϕ = 0.99 (right). The flow
direction is vertical. Small white squares in the enlargements represent obstacles, L = 4000 l.u., a = 10 l.u.
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fluid fluxes continuously change in sectional area, shape, and
orientation as well as branch and rejoin (see Fig. 1), researchers
developed their own methods of calculating T [13,14,20–22].
Closer inspection of these papers leads to a rather surprising
conclusion that no consensus has been reached as to the actual
meaning of the numerator in Eq. (2), as each research group
interpreted the average in Eq. (2) in their own, unique way.

The aim of this study is to propose a universal, efficient
method of calculating hydraulic tortuosity in an arbitrary
geometry. To this end in Sec. II we analyze several algorithms
used so far and show their weak and strong features. Then,
in Sec. III we present a new method, which enables one to
calculate T without the need of determining any streamlines,
which is often an ill-conditioned numerical problem [13],
especially if only approximate values of the velocity field
are available. This is the main result of the paper. Its
significance lies in that it greatly simplifies determination
of hydraulic tortuosity in experiments or three-dimensional
numerical simulations. In Sec. IV we apply this method in two
limiting cases: very high porosity (fibrous medium) or very
low porosity (system at percolation). We also make an attempt
to verify validity of splitting the Kozeny constant into a product
of β and T 2. Finally, Sec. V is devoted to conclusions.

II. COMPARISON OF EXISTING METHODS

As it was already mentioned, several methods of calculating
the hydraulic tortuosity in an arbitrary geometry are available
in the literature. Most of them reduce the problem to calculat-
ing T as a weighted average of the form,

T = 1

L

∑
i λiwi∑
i wi

, (3)

where i enumerates discrete streamlines, λi is the length of the
ith streamline, and wi is a weight.

Knackstedt and Zhang [22,23] used Eq. (3) with i running
through the nodes of a regular lattice on the inlet cross section
and chose the weights of the form,

wi = 1

ti
, (4)

where ti is the time in which a fluid particle moves along the
ith streamline. The intention behind (4) was to weight each
streamline length proportionally to the overall volumetric flow
associated with this streamline. Since the streamlines sample
the inlet plane uniformly, the weights satisfying this condition
should be proportional to (vi)in

x , the components of the fluid
velocities parallel to the macroscopic fluid flow direction (here
assumed to be directed along the x axis) and measured at the
points where the ith streamline cuts the inlet plane. Note that
the weights defined by (4) might be equivalently written as
wi = v̄i/λi , with v̄i being the average fluid velocity along the
ith streamline. However, apart from some trivial geometries
(e.g., straight capillaries of equal length), fluid velocity along
a typical streamline in a complex geometry, for example, in
a granular porous medium, can vary by several orders of
magnitude [13] and hence there is no connection between
v̄i/λi and (vi)in

x . For this reason it is not clear what the quantity
calculated by Knackstedt and Zhang has to do with the actual
hydraulic tortuosity.

Koponen et al. [20] introduced two families of tortuosities
T S

n , and T V
n , n ∈ Z, defined through(

T S
n

)n =
∫
A

λ̃n(r)v(r) d2r∫
A

v(r) d2r
, (5)

and (
T V

n

)n =
∫
V

λ̃n(r)v(r) d3r∫
V

v(r) d3r
, (6)

where A is an arbitrary cross section perpendicular to the
macroscopic fluid flow direction, V is the volume of the
sample, λ̃(r) = λ(r)/L is the tortuosity of the flow line passing
through a point r, v(r) = |v(r)| is the fluid speed at r, and
v(r) = 0 inside the solid phase. The index “S” at T S

n indicates
that this quantity is to be calculated on a surface (cross section),
whereas “V” at T V

n indicates a volumetric quantity.
Using a simple capillary model Koponen et al. concluded

that T S
n = T V

n , but it is not difficult to show that this is not true
in a general case. To this end it suffices to consider a bundle of
straight and wavy cylindrical capillaries of the same radius and
different lengths. The contribution of each of such capillaries
to the integrals in (5) is proportional to the area of its cross
section with A, which readily implies that T S

n is A-dependent.
For this reason T S

n should not be used to calculate the hydraulic
tortuosity unless, perhaps, in very large, homogeneous systems
where the effects of A-dependence could be averaged out.

In their actual calculations Koponen et al. used Eq. (6) with
the integrals approximated by sums [20],(

T V
n

)n ≈
∑

i λ̃
n(ri)v(ri)∑
i v(ri)

, (7)

where ri are some points that sample uniformly the available
pore space, either by being chosen at random [20] or by
being identified with the nodes of a lattice used to model
the system [21]. While for a given steady velocity field
T V

n is a mathematically well-defined quantity to which the
right-hand side of (7) should converge as the number of
points ri goes to infinity, the fact that it is defined through
volumetric integrals introduces some additional, presumably
unintentional weighting that favors longer streamlines. Using
a method described in Sec. III it can be shown that for flows
of incompressible fluids without eddies, T V

n can be expressed
in terms of surface integrals,(

T V
n

)n =
∫
A

λ̃n+1(r)v⊥(r) d2r∫
A

λ̃(r)v⊥(r) d2r
, (8)

where v⊥ is the component of the fluid velocity normal to
surface A. Comparison of this formula with Eq. (5) confirms
that T V

n �= T S
n .

Another approach was proposed by Matyka et al. [13],
whose formula for the hydraulic tortuosity (here denoted by
T M) in an integral representation can be written as

T M =
∫
A

λ̃(r)v⊥(r) d2r∫
A

v⊥(r) d2r
. (9)

where the surface A need not be perpendicular to the macro-
scopic flow direction and can even be curved, and λ̃ and v⊥
are assumed to vanish inside the solid phase of the medium. In
contrast to Eqs. (5) and (6), in which tortuosities of individual
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streamlines were weighted with local fluid speeds, in Eq. (9)
they are weighted with local fluxes. This guarantees that for
incompressible flows both integrals in Eq. (9), and hence T M,
are independent of A. The actual numerical calculations were
performed using a two-dimensional model system and Eq. (9)
was approximated with an arithmetic mean,

T M ≈ 1

N

N∑
i=1

λ̃(ri), (10)

where ri are some points on a cross section satisfying a
constant-flux constraint between two neighboring streamlines
and N is the number of these points.

Of the three methods presented in this overview, only that of
Matyka et al. correctly addresses the problem of recirculation
zones, or eddies—their contribution to T M vanishes. Another
advantage of Eq. (10) is that all terms in the sum are of the
same order of magnitude, whereas the sums in (7) contain
terms that can differ by several orders of magnitude. It is
a consequence of a fact that Eq. (7) implicitly divides the
space into regions of approximately equal volume and assigns
to them equal importance, whereas flow in a porous medium
takes place mainly in a few conducting channels which occupy
only a small fraction of the porous space. For this reason one
can expect that for the same number of streamlines Eq. (10),
which assigns equal importance to equal fluid fluxes, will be
loaded with a much smaller numerical error. A disadvantage
of Eq. (10) is that it would be difficult to apply it to three-
dimensional problems, the main difficulty being to find the
points ri satisfying a constant-flux condition.

Note also that it follows from Eqs. (8) and (9) that

T M = T V
−1 (11)

for arbitrary incompressible flows.

III. ALTERNATIVE METHOD

Just as it is possible to express a volumetric integral (6) as a
surface integral (8), it is possible to express a surface integral
(9) as a volumetric integral. The resulting formula reads

T M =
∫
V

v(r) d3r∫
V

vx(r) d3r
, (12)

where vx denotes the velocity component parallel to the
macroscopic flow direction. This equation can be written in
a particularly simple form,

T M = 〈v〉
〈vx〉 , (13)

in which 〈· · ·〉 denotes a spatial average over the pore space.
The idea that the ratio 〈v〉/〈vx〉 can be related to the

hydraulic tortuosity is not new. Carman [1] used it to argue
that permeability must be proportional to T −2, cf. Eq. (1),
rather than to T −1, as had been earlier postulated by Karman.
Koponen et al. [20] used this ratio explicitly as one of several
possible definitions of the hydraulic tortuosity. However, all
these attempts were based on a simple model where a porous
medium is assumed to be equivalent to a group of parallel
channels and no attempt was made toward justification of this
approach in more general cases.

FIG. 2. Quantities used in the proof of equation (12). Solid phase
(V0) is immersed in porous phase (V ′). A cross-section A consists of
the solid (A0) and porous (A′) part. V ∗ is made up by all streamlines
connecting the inlet and outlet planes. Formation of eddies, e.g. in
cavities, would violate Eq. (12).

A. Proof of Eq. (12)

The system volume V can be divided into two disjoint
subsets, the porous space V ′ and the solid phase V0 (see Fig. 2).
Similarly, any cross-section A can be divided into A′ ≡ A ∩ V ′
and A0 ≡ A ∩ V0. We assume that v = 0 and λ = 0 at any
r ∈ V0. Let V ∗ ⊂ V ′ denote the set of all points r ∈ V ′ such
that the streamline cutting r joins both the inlet and outlet
surfaces. A flow for which V ∗ �= V ′ shall be called reentrant,
and its characteristic feature is existence of closed streamlines.

Assume that the flow is stationary, incompressible, and not
reentrant. Incompressibility of flow implies that for any cross-
section A perpendicular to the flow direction the denominator
in Eq. (9) is equal to the total flux through the porous sample.
This leads to ∫

V

vx(r) d3r = L

∫
A

v⊥(r) d2r. (14)

To prove (12), it thus suffices to show that∫
V ′

v(r) d3r =
∫

A′
λ(r)v⊥(r) d2r. (15)

Since v(r) is defined and continuous at each r, and λ(r) is
defined and continuous at each r except for some points from a
zero-measure subset D ⊂ V ′ [13], both integrals in (15) exist.

Let A be a cross section perpendicular to the flow direction
(i.e., to the x axis) such that each streamline cuts A′ only
once (e.g., A is the inlet plane). Let s(r) be the distance from
A′ to r along the streamline passing through r. Except for a
zero-measure set, any point in V ′ can be uniquely identified
by the streamline it belongs to and s(r). Each streamline, on
the other hand, is uniquely identified by r ∈ A′ belonging
to this streamline. Thus A′ and s can be used to change the
integration variables in the integral on the left-hand side (l.h.s.)
of Eq. (15) from x,y,z to s,y,z. Since dx/ds = vx(r)/v(r), and∫∫

vx dydz is constant along streamlines in incompressible
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flows, we arrive at∫
V ′

v(r) d3r =
∫∫∫

vx(y,z,s) dydzds

=
∫

A′

(∫
ds(r)

)
vx(r)d2r

=
∫

A′
λ(r)vx(r) d2r, (16)

which is the right-hand side (r.h.s.) of (15).
Validity of (15) can be extended to cross sections of

arbitrary shape by noticing that v⊥(r) d2r is the flux associated
with a streamline that passes through r and hence is constant
along a streamline since the fluid is incompressible. For the
same reason, if a streamline cuts A many times, contributions
to the r.h.s. of (15) from each subsequent cutting are the same
in magnitude but of alternate signs and cancel out in pairs, so
that effectively each streamline contributes to the integral as if
it cut the cross section only once.

It is interesting to notice that using the same arguments
Eq. (15) can be generalized to∫

V ′
f (r)v(r) d3r =

∫
A′

f (r)λ(r)v⊥(r) d2r, (17)

where a function f (r) has a constant value along each
streamline.

B. Conditions of applicability of Eq. (12)

Validity of Eq. (12) is based on two assumptions: The fluid
is incompressible and the flow is not reentrant. The latter
condition is met, for example, for irrotational or potential
flows. This implies that Eq. (13) can be used to calculate
a hydraulic tortuosity for inviscid fluids. Another important
class of potential flows are those governed by the Laplace
equation (e.g., tracer diffusion or electric current). Thus we
conclude that Eq. (13) can be used to calculate diffusional or
electrical tortuosities.

Real fluids, however, are viscous and as they flow through
a porous medium, some recirculation zones (eddies) are
produced by rapid changes in pore aperture or blind pore
spaces. These eddies make the flow reentrant even at very
low Reynolds number. The contribution from reentrant zones
to the volumetric integral in (15) is strictly positive, whereas it
vanishes for the surface integral. Therefore, from a mathemat-
ical point of view, a weaker relation replaces (15) for general
laminar viscous incompressible flows,

T M � 〈v〉
〈vx〉 . (18)

However, in flows through porous porous media at low
Reynolds number the volumes where the flow is reentrant not
only constitute a small fraction of the total porous volume V ′,
but the fluid velocity in these volumes is at least an order of
magnitude smaller than that in conducting channels. Therefore
the contribution from reentrant regions to the volumetric
integral in (15) can be expected to be negligible and hence
Eq. (13) should be also applicable to viscous flows, at least in
the low Reynolds number regime.

IV. APPLICATIONS

To verify usability of Eq. (13), we employed it to find the
hydraulic tortuosity in a model of freely overlapping squares
[13,14,20,21]. In this model one considers a two-dimensional
lattice with a porous matrix modeled with freely overlapping
solid squares of size a × a lattice units (l.u.) placed uniformly
at random locations on a square lattice L × L l.u. (1 � a �
L). The squares are fixed in space but free to overlap, and the
remaining void space is filled with a fluid to which a constant,
external force is imposed along the x axis to model the gravity.
This system, especially at high porosities, can be regarded as
a cross section of a fibrous material made up of long, parallel
fibers aligned perpendicularly to the flow direction.

To make sure that the percolation threshold has its usual
meaning, we assumed the system to be a rectangle of size
3L/2 × L with impenetrable walls along its longer side.
Obstacles of size a × a were placed only in the central part
of size L × L (see Fig. 1). In this way any percolating route
through the pore space was open to flow. Measurements of all
physical quantities were performed only using the data from
the central, porous subsystem. Because our system was finite,
some obstacle configurations with ϕ � ϕc, especially close to
ϕc, turned out to block the flow completely. We rejected such
configurations. We solved the flow equations numerically in
the creeping flow regime using the PALABOS (Parallel Lattice
Boltzmann Solver) software [24] for a = 10 and L = 1000
(ϕc ≈ 0.367 [25]).

Figure 3 shows the tortuosity calculated from Eq. (12)
for a broad range of porosities. For 0.45 � ϕ � 0.9 these
results are practically the same as those reported in [13],
where much smaller systems of size L × L with periodic
boundary conditions in both directions were used and the
values of physical parameters were extrapolated from those
obtained for 50 � L � 300. This is consistent with [14],
where it was argued that the condition for the boundary and
finite-size effects to be negligible in this model is L � 400
and a/L � 0.01. What is even more remarkable, very good
agreement with the results of [13], where the tortuosity was
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FIG. 3. (Color online) Tortuosity as a function of porosity in the
model of overlapping squares for a = 10 l.u. and L = 1000 l.u.
Symbols represent the results obtained with Eq. (12). The vertical
dashed line shows the percolation threshold ϕc ≈ 0.367 below which
no flow (in the limit of L → ∞) is possible. Inset: a log-log plot
of T − 1 as a function of 1 − ϕ; the solid line is the best-fit to
T − 1 ∝ √

1 − ϕ for ϕ � 0.8.
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calculated from Eq. (9) rather than from (12), indicates that the
difference between the two formulas, resulting from how they
treat reentrant flows, is negligible. This validates utilization of
Eq. (12) close to ϕc, where Eq. (9) is numerically unstable and
hence rather useless.

Taking into account that for ϕ ≈ 1 the relaxation time of the
lattice Boltzmann method (LBM) to the steady-state solution
becomes very large [13], we cross-validated it with the finite
element method (FEM) using the ELMER [26] software. We
found that for ϕ � 0.9 ELMER (FEM) was much faster than
PALABOS (LBM) and the maximum relative error in tortuosity
calculated with both methods was smaller than 0.5%. However,
as the porosity was lowered or the system size (L) enlarged,
the FEM solver tended to lose stability, and hence for smaller
porosities it could not be relied on.

The inset in Fig. 3 depicts a log-log plot of T − 1 as a
function of 1 − ϕ for large porosities (ϕ � 0.8) at which the
model mimics a fibrous medium. The data suggest that in this
case T − 1 ∝ (1 − ϕ)γ with γ = 1/2, that is,

T = 1 + p
√

1 − ϕ, (19)

where p is a constant. This finding is at odds with most of the
conjectures about the tortuosity-porosity dependence for ϕ ≈
1, as a vast majority of them predicts that γ = 1. For example,
Maxwell’s formula for electrical conductivity of a medium
containing a dilute suspension of small spheres [27] implies
that the electrical tortuosity Tel satisfies Tel = 1 + 1

2 (1 − ϕ)
as ϕ → 1. Similarly, Weissberg [28] argued that 1 − 1

2 ln ϕ ≈
1 + 1

2 (1 − ϕ) is the lower bound for diffusional tortuosity.
As for the hydraulic tortuosity, Mauret and Renauld in their
study on fibrous mats assumed that T = 1 − p ln ϕ with some
constant p [29]. Other hypotheses include T = 1 + p(1 − ϕ)
[6], T = √

1 + p(1 − ϕ) [30], and T ∝ ϕp [31] (see [4,17,32]
for discussion of this topic) and all imply γ = 1. While the
conjectures regarding diffusional or electrical tortuosity in
highly porous media are well grounded, the above-mentioned
conjectures regarding hydraulic tortuosity are founded on
various ad hoc approximations and even speculations, for
example, about equivalence of the hydraulic and electrical tor-
tuosities, and their validity is only hypothetical. A theoretical
tortuosity-porosity relation which predicts γ �= 1 was recently
proposed by Ahmadi et al. [17]. Their formula,

T =
√

2

3

ϕ

1 − p(1 − ϕ)2/3
+ 1

3
,

implies γ = 2/3. The same value of γ results from a formula
proposed in [33], T = ϕ/[1 − (1 − ϕ)

2
3 ].

Since none of the above-mentioned formulas can be fitted to
our numerical results, we verified that our data are not loaded
with finite-size errors (data not shown). Then we investigated
the flow in several highly porous systems. Typical examples
of the velocity field in such systems are visualized in Fig. 1
(generated for L = 4000 l.u., a = 10 l.u.). As can be seen, even
if obstacles occupy only 1% of the volume so that practically
each of them forms a separate “island,” the flow is very sinuous,
as if restricted by some kind of solid-wall channels. These
virtual channels are created by variations in local concentration
of obstacles. Since a fluid flux through a two-dimensional (2D)
channel with the no-slip boundary condition is proportional

1

2

3

 1  2  4  8  16  32  64

T

L/a

slope=0.19

FIG. 4. Double logarithmic plot of the hydraulic tortuosity (T ) as
a function of a dimensionless system length L/a at the percolation
threshold for a = 10 l.u. (symbols). A solid line is a fit to a power-law
dependency T ∝ (L/a)dT with dT = 0.19.

to its width cubed, the fluid passes most easily through the
interconnected regions of low local obstacle concentration,
whereas the regions of high local obstacle concentration—
even if occupied by separate obstacles—act effectively as
almost impenetrable barriers. This many-body effect is not
present in electric, diffusional, or inviscid fluid flows [14].
For this reason electrical (or diffusional) tortuosity Tel at high
porosities is significantly lower than the hydraulic tortuosity
and |dTel/dϕ| remains finite as ϕ → 1.

Figure 4 presents a log-log plot of the hydraulic tortuosity
dependence on a dimensionless system length L/a at the
percolation threshold ϕc ≈ 0.367. The best fit to a power
law yields T ∝ LdT with dT = 0.19 ± 0.01. This value signifi-
cantly exceeds the exponent dmin = 1.130 ± 0.002 controlling
the scaling of the shortest path between two points on a
percolating cluster [34]. This indicates that even at percolation
most of the fluid does not choose the shortest-path channels.
Another characteristic percolation length is the most probable
traveling length �̃∗, which at bond percolation scales with
the system size as Ld�̃ with d�̃ = 1.21 ± 0.02 [35]. Using a
scaling ansatz for the probability distribution function of a
path length λ proposed in [35] it can be shown that the average
path length 〈λ〉 ∼ �̃∗ ∼ Ld�̃ . Moreover, closer scrutiny of the
method employed in [35] to generate streamlines reveals that a
constant-flux condition between neighboring streamlines was
implicitly applied, just as in Eq. (10). Hence, 〈λ〉/L ∝ T M,
which implies

dT = d�̃ − 1. (20)

Our results for dT are in very good agreement with this
conjecture.

While Eq. (13) ensures that hydraulic tortuosity is a well-
defined quantity, a question remains whether Carman’s idea
of splitting the Kozeny constant into the product of β and T 2

can be justified. To answer it, we used Eq. (1) to find the shape
factor in the model of overlapping squares. The porous matrix
was assumed to consist of small rectangles of size 1 l.u. × 1 l.u.,
and S was calculated from its perimeter. The result, shown in
Fig. 5, indicates that β is practically constant for the porosity
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FIG. 5. The shape factor β as a function of porosity ϕ for a system
of overlapping squares of side a = 10 l.u. (crosses). The dashed line
is a horizontal guide to the eye. Inset: Kozeny constant κ = βT 2 for
the same system (points) and from Eq. (37) in [36] (solid line) and
from [37] (dashed line).

range 0.7 � ϕ � 0.85. This observation, however, cannot be
considered as a conclusive proof of Carman’s conjecture,
because T 2 changes by only ≈20% in this porosity range,
so that the Kozeny constant also appears almost independent
of ϕ, as seen is the inset of Fig. 5. The inset shows also
theoretical relations between κ and ϕ derived by Kyan et al.
[36] (solid line) and by Sangani and Acrivos [37] (dashed
line), the former being consistent with experimental results
for various fibrous systems of porosity ϕ > 0.68 and random
fiber orientations, and the latter being a reference solution
for a transverse flow through a square array of cylinders. We
used the formula of Ref. [37] to estimate the accuracy of our
simulation method. Permeability for square arrays of circles
of various diameters d turned out to be systematically smaller
than that of Ref. [37], with the relative error decreasing from
≈9% for d = 8 l.u. down to ≈0.5% for d = 70 l.u. We thus
conclude that our results for squares of side a = 10 l.u. are
probably loaded with a systematic error below 10%. We did not
check the dependence of β on the shape of obstacles because
our simplified method of determining the value of S cannot be
applied to obstacles of nonrectangular shapes.

V. DISCUSSION AND CONCLUSIONS

In this paper we focused on the problem of calculating
the hydraulic tortuosity, defined as the average elongation of
a streamline length in a porous medium, in arbitrary flow
geometries. Our analysis shows that several existing methods
of calculating hydraulic tortuosity differ in the interpretation
of how the average streamline length is to be calculated. Each
of these methods, if applied to a system with a realistically
complex geometry, would yield a different tortuosity value,
and only the method developed in Ref. [13] produces a
number that does not depend on a cross section along which
measurements are carried out and consistently addresses the
problem of recirculation zones.

For incompressible fluids the method developed in Ref. [13]
can be reduced to calculating a ratio of the mean fluid velocity
to the mean component of the fluid velocity along the external
force direction. The two methods yield exactly the same values
for regions which are connected by streamlines to the inlet and
outlet surfaces, and differ only in recirculation zones. As the

contribution from recirculation zones (eddies) is expected to be
negligible at low Reynolds number regime, both methods can
be considered equivalent for incompressible creeping flows
through porous media. This conclusion was confirmed by our
numerical simulations of a 2D model of freely overlapping
squares. Thus, hydraulic tortuosity defined as the average
elongation of fluid path lengths can be calculated directly from
the velocity field. This not only greatly simplifies determina-
tion of this quantity, in experiments or numerical simulations,
including complex three-dimensional (3D) systems, but also
opens a new perspective on its physical relevance. Many
researchers doubted if an average path length could be defined,
even conceptually, for complex flows with frequent branching
and rejoining of flow streamlines (see Ref. [4]), but there is no
doubt that the average fluid velocity is a well-defined physical
quantity. Moreover, the possibility of expressing the hydraulic
tortuosity in terms of mean fluid velocities could be used to
extend its definition to the case of higher Reynolds numbers,
where the notion of individual streamlines loses its meaning.
Note also that since no recirculation zones can be formed
in diffusional or electrical flows, the average elongation of
streamlines in diffusional or electrical transport through porous
media can be also exactly calculated directly from local fields,
which obviates the need of determining individual streamlines.

We applied the new method in two limiting cases: very
high or very low porosities. In the former case, which
corresponds to a flow through fibrous materials, we found
that the hydraulic tortuosity T scales with the porosity ϕ

in accordance with T − 1 ∝ (1 − ϕ)γ , where γ ≈ 1
2 . This

behavior differs from that found in diffusional or electrical
flows for which γ = 1. This reflects a fact that determination
of the velocity field in a high-porosity hydrodynamical system
is a many-body problem, whereas the electric field in the same
porous system can be safely approximated as a superposition of
single-obstacle solution [27,28]. Hydraulic and diffusional (or
electrical) tortuosities are thus completely different quantities
in highly porous, fibrous systems. A difference between our
result (γ = 1/2) and a recent hypothesis by Ahmadi et al. [17]
(γ = 2/3) may be caused by different space dimensionality
(2D versus 3D) and requires further investigations.

Hydraulic tortuosity at percolation was found to scale
with the system size L as LdT with dT = 0.19 ± 0.01. This
suggests that dT = d�̃ − 1, where d�̃ is an exponent controlling
the scaling of the most probable traveling length at bond
percolation [35].

Finally, we found the shape factor to be independent of the
porosity for quite a broad range of porosities corresponding to
real fibrous media. Although this result is encouraging, it can-
not be regarded as an ultimate proof of the validity of express-
ing Kozeny’s constant as a function of a porosity-independent
shape factor and a porosity-dependent hydraulic tortuosity,
because the hydraulic tortuosity does not change significantly
in the relevant porosity range. Further investigation is required,
especially for three-dimensional models of granular media, for
which Carman’s theory was originally developed.
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