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The information paradox in a nutshell

The stage: free quantum field on a Schwarzschild black hole background

Essence of Hawking effect: vacuum state for a free falling observer |0〉 6=
vacuum state for static observer |0〉out

• The static observer is accelerated and experiences |0〉 as a thermal bath (Unruh)

• far away from the horizon she measures a temperature TH = 1
2πGM

the static observer does not have access to the region inside the horizon... she
associates to |0〉 a mixed state given by

ρ = Trin(|0〉〈0|)

however the “full” state |0〉〈0| is pure.

• Back-reaction: Black hole radiates thermally at temp. TH =⇒ mass decreases

• Black hole completely evaporates ≡ no horizon, no “inside” region

• The mixed state ρ cannot be a partial trace of a pure state since there’s no
degrees of freedom to trace out left!
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Is purity eternal?

Do black holes evolve pure states into mixed states?

PHYSICAL REVIE% 0 VOLUME 14, NUMBER 10 15 NOVEMBER 1976

Breakdown of predictability in gravitational collapse~

S. W. Ha,'wking~
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England

and Cahfornia Institute of Technology, Pasadena, California 91125
(Received 25 August 1975)

The principle of equivalence, which says that gravity couples to the energy-momentum tensor of matter, and
the quantum-mechanical requirement that energy should be positive imply that gravity is always attractive.
This leads to singularities in any reasonable theory of gravitation. A singularity is a place where the classical
concepts of space and time break down as do all the known laws of physics because they are all formulated on
a classical space-time background. In this paper it is claimed that this breakdown is not merely a result of our
ignorance of the correct theory but that it represents a fundamental limitation to our ability to predict the
future, a limitation that is analogous but additional to the limitation imposed by the normal quantum-
mechanical uncertainty principle. The new limitation arises because general relativity allows the causal
structure of space-time to be very different from that of Minkowski space. The interaction region can be
bounded not only by an initial surface on which data are given and a final surface on which measurements are
made but also a "hidden surface" about which the observer has only limited information such as the mass,
angular momentum, and charge. Concerning this hidden surface one has a "principle of ignorance": The
surface emits with equal probability all configurations of particles- compatible with the observers limited
knowledge. It is shown that the ignorance principle holds for the quantum-mechanical evaporation of black
holes: The black hole creates particles in pairs, with one particle always falling into the hole and the other
possibly escaping to infinity. Because part of the information about the state of the system is lost down the
hole, the final situation is represented by a density matrix rather than a pure quantum state. This means there
is no S matrix for the process of black-hole formation and evaporation. Instead one has to introduce a new
operator, called the superscattering operator, which maps density matrices describing the initial situation to
density matrices describing the final situation.

I. INTRODUCTION

Gravity is by far the weakest interaction known
to physics: The ratio of the gravitational to elec-
trical forces between two electrons is about one
part in 104'. In fact, gravity is so weak that it
would not be obsexvable at all were it not distin-
guished from all other interactions by having the
property known as the principle of universality or
equivalence: Gravity affects the trajectories of all
freely moving particles in the same way. This has
been verified experimentally to an accuracy of
about 10 "by RoQ, Krotkov, and Dicker and by
Braginsky and Panov. ' Mathematically, the princi-
ple of equivalence is expressed as saying that
gravity couples to the energy-momentum tensor
of matter. This result and the usual requirement
from quantum theory that the local energy density
should be positive imply that gravity is always at-
tractive. The gravitational fields of all the parti-
cles in large concentrations of matter therefore
add up and can dominate over all other forces. As
predicted by general relativity and verified experi-
mentally, the universality of gravity extends to
light. A sufficiently high concentration of mass can
therefore produce such a strong gravitational field
that no light can escape. By the principle of spe-
cial relativity, nothing else can escape either since
nothing can travel faster than. light. One thus has

a situation in which a certain amount of matter is
trapped in a region whose boundary shrinks to
zero in a finite time. Something obviously goes
badly wrong. In fact, as was shown in a series of
papers by Penrose and this author, ' ' a space-time
singularity is inevitable in such circumstances
provided that general relativity is correct and that
the energy-momentum tensor of matter satisfies
a certain positive-definite inequality.
Singularities are predicted to occur in two areas.

The first is in the past at the beginning of the pres-
ent expansion of the universe. This is thought to be
the "big bang" and is generally regarded as the
beginning of the universe. The second area in
which singularities are predicted is the collapse
of isolated regions of high-mass concentration such
as burnt-out stars.
A singularity can be regarded as a place where

there is a breakdown of the classical concept of
space-time as a manifold with a pseudo-Reiman-
nian metric. Because all known laws of physics
are formulated on a classical space-time back-
ground, they will all break down at a singularity.
This is a great crisis for physics because it means
that one cannot predict the future: One does not
know what will come out of a singularity.
Many physicists are very unwilling to believe

that physics breaks down at singularities. The
following attempts were therefore made in order

14 2460

• Ordinary quantum evolution is unitary: ρfin = SρinS† with SS† = 1

• Unitary S =⇒ if Trρ2
in = 1 then Trρ2

fin = 1 i.e. purity is eternal

• A “superscattering” operator $: ρfin = $ρin 6= SρinS† then Trρ2
fin ≤ 1

Commun. Math. Phys. 87, 395 415 (1982) 
Communications in 
Math  

Physics 
© Springer-Verlag 1982 

The Unpredictability of Quantum Gravity 
S. W. Hawking 
University of Cambridge, D.A.M.T.P., Cambridge CB3 9EW, England 

Abstract. Quantum gravity seems to introduce a new level of unpredictability 
into physics over and above that normally associated with the uncertainty 
principle. This is because the metric of spacetime can fluctuate from being 
globally hyperbolic. In other words, the evolution is not completely determined 
by Cauchy data at past or future infinity. I present a number of axioms that the 
asymptotic Green functions should obey in any reasonable theory of quantum 
gravity. These axioms are the same as for ordinary quantum field theory in flat 
spacetime, except that one axiom, that of asymptotic completeness, is omitted. 
This allows pure quantum states to decay into mixed states. Calculations with 
simple models of topologically non-trivial spacetime indicate that such loss of 
quantum coherence will occur but that the effect will be very small except for 
fundamental scalar particles, if any such exist. 

1. Introduction 

In the eighteenth and nineteenth centuries it was believed that physics was 
completely deterministic. That is to say, the classical physical laws determined the 
exact values of the coordinates and the conjugate momenta of a physical system 
from their values at one time. In practice, the calculation usually became too 
complicated for systems of more than a few degrees of freedom, so people resorted 
to statistical treatments in which they did not attempt to predict the exact state of 
the system, but only certain gross properties such as the pressure or the 
temperature. The use of classical statistical mechanics was regarded only as a 
matter of convenience, however, in principle it was believed that one could predict 
the exact state of the system. 

With the advent of quantum mechanics in the 1920's, it was realized that one 
could predict exactly either the values of the co-ordinates or the values of the 
momenta, but not both. More precisely, the most that one could predict exactly 
were the values of a complete commuting set of observables and that only if the 
system happened to be in an eigenstate of that set of observables. Thus, roughly 
speaking, one's ability to make precise predictions was cut in half. As in the case of 
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“I present a number of axioms that the asymptotic Green functions should
obey in any reasonable theory of quantum gravity. These axioms are the
same as for ordinary quantum field theory in flat spacetime, except that one
axiom, that of asymptotic completeness, is omitted. This allows pure
quantum states to decay into mixed states.”
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Abstract. Quantum gravity seems to introduce a new level of unpredictability 
into physics over and above that normally associated with the uncertainty 
principle. This is because the metric of spacetime can fluctuate from being 
globally hyperbolic. In other words, the evolution is not completely determined 
by Cauchy data at past or future infinity. I present a number of axioms that the 
asymptotic Green functions should obey in any reasonable theory of quantum 
gravity. These axioms are the same as for ordinary quantum field theory in flat 
spacetime, except that one axiom, that of asymptotic completeness, is omitted. 
This allows pure quantum states to decay into mixed states. Calculations with 
simple models of topologically non-trivial spacetime indicate that such loss of 
quantum coherence will occur but that the effect will be very small except for 
fundamental scalar particles, if any such exist. 

1. Introduction 

In the eighteenth and nineteenth centuries it was believed that physics was 
completely deterministic. That is to say, the classical physical laws determined the 
exact values of the coordinates and the conjugate momenta of a physical system 
from their values at one time. In practice, the calculation usually became too 
complicated for systems of more than a few degrees of freedom, so people resorted 
to statistical treatments in which they did not attempt to predict the exact state of 
the system, but only certain gross properties such as the pressure or the 
temperature. The use of classical statistical mechanics was regarded only as a 
matter of convenience, however, in principle it was believed that one could predict 
the exact state of the system. 

With the advent of quantum mechanics in the 1920's, it was realized that one 
could predict exactly either the values of the co-ordinates or the values of the 
momenta, but not both. More precisely, the most that one could predict exactly 
were the values of a complete commuting set of observables and that only if the 
system happened to be in an eigenstate of that set of observables. Thus, roughly 
speaking, one's ability to make precise predictions was cut in half. As in the case of 
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The principle of equivalence, which says that gravity couples to the energy-momentum tensor of matter, and
the quantum-mechanical requirement that energy should be positive imply that gravity is always attractive.
This leads to singularities in any reasonable theory of gravitation. A singularity is a place where the classical
concepts of space and time break down as do all the known laws of physics because they are all formulated on
a classical space-time background. In this paper it is claimed that this breakdown is not merely a result of our
ignorance of the correct theory but that it represents a fundamental limitation to our ability to predict the
future, a limitation that is analogous but additional to the limitation imposed by the normal quantum-
mechanical uncertainty principle. The new limitation arises because general relativity allows the causal
structure of space-time to be very different from that of Minkowski space. The interaction region can be
bounded not only by an initial surface on which data are given and a final surface on which measurements are
made but also a "hidden surface" about which the observer has only limited information such as the mass,
angular momentum, and charge. Concerning this hidden surface one has a "principle of ignorance": The
surface emits with equal probability all configurations of particles- compatible with the observers limited
knowledge. It is shown that the ignorance principle holds for the quantum-mechanical evaporation of black
holes: The black hole creates particles in pairs, with one particle always falling into the hole and the other
possibly escaping to infinity. Because part of the information about the state of the system is lost down the
hole, the final situation is represented by a density matrix rather than a pure quantum state. This means there
is no S matrix for the process of black-hole formation and evaporation. Instead one has to introduce a new
operator, called the superscattering operator, which maps density matrices describing the initial situation to
density matrices describing the final situation.

I. INTRODUCTION

Gravity is by far the weakest interaction known
to physics: The ratio of the gravitational to elec-
trical forces between two electrons is about one
part in 104'. In fact, gravity is so weak that it
would not be obsexvable at all were it not distin-
guished from all other interactions by having the
property known as the principle of universality or
equivalence: Gravity affects the trajectories of all
freely moving particles in the same way. This has
been verified experimentally to an accuracy of
about 10 "by RoQ, Krotkov, and Dicker and by
Braginsky and Panov. ' Mathematically, the princi-
ple of equivalence is expressed as saying that
gravity couples to the energy-momentum tensor
of matter. This result and the usual requirement
from quantum theory that the local energy density
should be positive imply that gravity is always at-
tractive. The gravitational fields of all the parti-
cles in large concentrations of matter therefore
add up and can dominate over all other forces. As
predicted by general relativity and verified experi-
mentally, the universality of gravity extends to
light. A sufficiently high concentration of mass can
therefore produce such a strong gravitational field
that no light can escape. By the principle of spe-
cial relativity, nothing else can escape either since
nothing can travel faster than. light. One thus has

a situation in which a certain amount of matter is
trapped in a region whose boundary shrinks to
zero in a finite time. Something obviously goes
badly wrong. In fact, as was shown in a series of
papers by Penrose and this author, ' ' a space-time
singularity is inevitable in such circumstances
provided that general relativity is correct and that
the energy-momentum tensor of matter satisfies
a certain positive-definite inequality.
Singularities are predicted to occur in two areas.

The first is in the past at the beginning of the pres-
ent expansion of the universe. This is thought to be
the "big bang" and is generally regarded as the
beginning of the universe. The second area in
which singularities are predicted is the collapse
of isolated regions of high-mass concentration such
as burnt-out stars.
A singularity can be regarded as a place where

there is a breakdown of the classical concept of
space-time as a manifold with a pseudo-Reiman-
nian metric. Because all known laws of physics
are formulated on a classical space-time back-
ground, they will all break down at a singularity.
This is a great crisis for physics because it means
that one cannot predict the future: One does not
know what will come out of a singularity.
Many physicists are very unwilling to believe

that physics breaks down at singularities. The
following attempts were therefore made in order
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• Ordinary quantum evolution is unitary: ρfin = SρinS† with SS† = 1

• Unitary S =⇒ if Trρ2
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quantum coherence will occur but that the effect will be very small except for 
fundamental scalar particles, if any such exist. 

1. Introduction 

In the eighteenth and nineteenth centuries it was believed that physics was 
completely deterministic. That is to say, the classical physical laws determined the 
exact values of the coordinates and the conjugate momenta of a physical system 
from their values at one time. In practice, the calculation usually became too 
complicated for systems of more than a few degrees of freedom, so people resorted 
to statistical treatments in which they did not attempt to predict the exact state of 
the system, but only certain gross properties such as the pressure or the 
temperature. The use of classical statistical mechanics was regarded only as a 
matter of convenience, however, in principle it was believed that one could predict 
the exact state of the system. 

With the advent of quantum mechanics in the 1920's, it was realized that one 
could predict exactly either the values of the co-ordinates or the values of the 
momenta, but not both. More precisely, the most that one could predict exactly 
were the values of a complete commuting set of observables and that only if the 
system happened to be in an eigenstate of that set of observables. Thus, roughly 
speaking, one's ability to make precise predictions was cut in half. As in the case of 

0010-3616/82/0087/0395/$04.20 

Commun. Math. Phys. 87, 395 415 (1982) 
Communications in 
Math  

Physics 
© Springer-Verlag 1982 

The Unpredictability of Quantum Gravity 
S. W. Hawking 
University of Cambridge, D.A.M.T.P., Cambridge CB3 9EW, England 

Abstract. Quantum gravity seems to introduce a new level of unpredictability 
into physics over and above that normally associated with the uncertainty 
principle. This is because the metric of spacetime can fluctuate from being 
globally hyperbolic. In other words, the evolution is not completely determined 
by Cauchy data at past or future infinity. I present a number of axioms that the 
asymptotic Green functions should obey in any reasonable theory of quantum 
gravity. These axioms are the same as for ordinary quantum field theory in flat 
spacetime, except that one axiom, that of asymptotic completeness, is omitted. 
This allows pure quantum states to decay into mixed states. Calculations with 
simple models of topologically non-trivial spacetime indicate that such loss of 
quantum coherence will occur but that the effect will be very small except for 
fundamental scalar particles, if any such exist. 

1. Introduction 

In the eighteenth and nineteenth centuries it was believed that physics was 
completely deterministic. That is to say, the classical physical laws determined the 
exact values of the coordinates and the conjugate momenta of a physical system 
from their values at one time. In practice, the calculation usually became too 
complicated for systems of more than a few degrees of freedom, so people resorted 
to statistical treatments in which they did not attempt to predict the exact state of 
the system, but only certain gross properties such as the pressure or the 
temperature. The use of classical statistical mechanics was regarded only as a 
matter of convenience, however, in principle it was believed that one could predict 
the exact state of the system. 

With the advent of quantum mechanics in the 1920's, it was realized that one 
could predict exactly either the values of the co-ordinates or the values of the 
momenta, but not both. More precisely, the most that one could predict exactly 
were the values of a complete commuting set of observables and that only if the 
system happened to be in an eigenstate of that set of observables. Thus, roughly 
speaking, one's ability to make precise predictions was cut in half. As in the case of 

0010-3616/82/0087/0395/$04.20 

“I present a number of axioms that the asymptotic Green functions should
obey in any reasonable theory of quantum gravity. These axioms are the
same as for ordinary quantum field theory in flat spacetime, except that one
axiom, that of asymptotic completeness, is omitted. This allows pure
quantum states to decay into mixed states.”

Michele Arzano — Purity is not eternal at the Planck scale 4/22



Is purity eternal?

Do black holes evolve pure states into mixed states?

PHYSICAL REVIE% 0 VOLUME 14, NUMBER 10 15 NOVEMBER 1976

Breakdown of predictability in gravitational collapse~

S. W. Ha,'wking~
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England

and Cahfornia Institute of Technology, Pasadena, California 91125
(Received 25 August 1975)

The principle of equivalence, which says that gravity couples to the energy-momentum tensor of matter, and
the quantum-mechanical requirement that energy should be positive imply that gravity is always attractive.
This leads to singularities in any reasonable theory of gravitation. A singularity is a place where the classical
concepts of space and time break down as do all the known laws of physics because they are all formulated on
a classical space-time background. In this paper it is claimed that this breakdown is not merely a result of our
ignorance of the correct theory but that it represents a fundamental limitation to our ability to predict the
future, a limitation that is analogous but additional to the limitation imposed by the normal quantum-
mechanical uncertainty principle. The new limitation arises because general relativity allows the causal
structure of space-time to be very different from that of Minkowski space. The interaction region can be
bounded not only by an initial surface on which data are given and a final surface on which measurements are
made but also a "hidden surface" about which the observer has only limited information such as the mass,
angular momentum, and charge. Concerning this hidden surface one has a "principle of ignorance": The
surface emits with equal probability all configurations of particles- compatible with the observers limited
knowledge. It is shown that the ignorance principle holds for the quantum-mechanical evaporation of black
holes: The black hole creates particles in pairs, with one particle always falling into the hole and the other
possibly escaping to infinity. Because part of the information about the state of the system is lost down the
hole, the final situation is represented by a density matrix rather than a pure quantum state. This means there
is no S matrix for the process of black-hole formation and evaporation. Instead one has to introduce a new
operator, called the superscattering operator, which maps density matrices describing the initial situation to
density matrices describing the final situation.

I. INTRODUCTION

Gravity is by far the weakest interaction known
to physics: The ratio of the gravitational to elec-
trical forces between two electrons is about one
part in 104'. In fact, gravity is so weak that it
would not be obsexvable at all were it not distin-
guished from all other interactions by having the
property known as the principle of universality or
equivalence: Gravity affects the trajectories of all
freely moving particles in the same way. This has
been verified experimentally to an accuracy of
about 10 "by RoQ, Krotkov, and Dicker and by
Braginsky and Panov. ' Mathematically, the princi-
ple of equivalence is expressed as saying that
gravity couples to the energy-momentum tensor
of matter. This result and the usual requirement
from quantum theory that the local energy density
should be positive imply that gravity is always at-
tractive. The gravitational fields of all the parti-
cles in large concentrations of matter therefore
add up and can dominate over all other forces. As
predicted by general relativity and verified experi-
mentally, the universality of gravity extends to
light. A sufficiently high concentration of mass can
therefore produce such a strong gravitational field
that no light can escape. By the principle of spe-
cial relativity, nothing else can escape either since
nothing can travel faster than. light. One thus has

a situation in which a certain amount of matter is
trapped in a region whose boundary shrinks to
zero in a finite time. Something obviously goes
badly wrong. In fact, as was shown in a series of
papers by Penrose and this author, ' ' a space-time
singularity is inevitable in such circumstances
provided that general relativity is correct and that
the energy-momentum tensor of matter satisfies
a certain positive-definite inequality.
Singularities are predicted to occur in two areas.

The first is in the past at the beginning of the pres-
ent expansion of the universe. This is thought to be
the "big bang" and is generally regarded as the
beginning of the universe. The second area in
which singularities are predicted is the collapse
of isolated regions of high-mass concentration such
as burnt-out stars.
A singularity can be regarded as a place where

there is a breakdown of the classical concept of
space-time as a manifold with a pseudo-Reiman-
nian metric. Because all known laws of physics
are formulated on a classical space-time back-
ground, they will all break down at a singularity.
This is a great crisis for physics because it means
that one cannot predict the future: One does not
know what will come out of a singularity.
Many physicists are very unwilling to believe

that physics breaks down at singularities. The
following attempts were therefore made in order

14 2460

• Ordinary quantum evolution is unitary: ρfin = SρinS† with SS† = 1

• Unitary S =⇒ if Trρ2
in = 1 then Trρ2

fin = 1 i.e. purity is eternal

• A “superscattering” operator $: ρfin = $ρin 6= SρinS† then Trρ2
fin ≤ 1

Commun. Math. Phys. 87, 395 415 (1982) 
Communications in 
Math  

Physics 
© Springer-Verlag 1982 

The Unpredictability of Quantum Gravity 
S. W. Hawking 
University of Cambridge, D.A.M.T.P., Cambridge CB3 9EW, England 

Abstract. Quantum gravity seems to introduce a new level of unpredictability 
into physics over and above that normally associated with the uncertainty 
principle. This is because the metric of spacetime can fluctuate from being 
globally hyperbolic. In other words, the evolution is not completely determined 
by Cauchy data at past or future infinity. I present a number of axioms that the 
asymptotic Green functions should obey in any reasonable theory of quantum 
gravity. These axioms are the same as for ordinary quantum field theory in flat 
spacetime, except that one axiom, that of asymptotic completeness, is omitted. 
This allows pure quantum states to decay into mixed states. Calculations with 
simple models of topologically non-trivial spacetime indicate that such loss of 
quantum coherence will occur but that the effect will be very small except for 
fundamental scalar particles, if any such exist. 

1. Introduction 

In the eighteenth and nineteenth centuries it was believed that physics was 
completely deterministic. That is to say, the classical physical laws determined the 
exact values of the coordinates and the conjugate momenta of a physical system 
from their values at one time. In practice, the calculation usually became too 
complicated for systems of more than a few degrees of freedom, so people resorted 
to statistical treatments in which they did not attempt to predict the exact state of 
the system, but only certain gross properties such as the pressure or the 
temperature. The use of classical statistical mechanics was regarded only as a 
matter of convenience, however, in principle it was believed that one could predict 
the exact state of the system. 

With the advent of quantum mechanics in the 1920's, it was realized that one 
could predict exactly either the values of the co-ordinates or the values of the 
momenta, but not both. More precisely, the most that one could predict exactly 
were the values of a complete commuting set of observables and that only if the 
system happened to be in an eigenstate of that set of observables. Thus, roughly 
speaking, one's ability to make precise predictions was cut in half. As in the case of 

0010-3616/82/0087/0395/$04.20 

Commun. Math. Phys. 87, 395 415 (1982) 
Communications in 
Math  

Physics 
© Springer-Verlag 1982 

The Unpredictability of Quantum Gravity 
S. W. Hawking 
University of Cambridge, D.A.M.T.P., Cambridge CB3 9EW, England 

Abstract. Quantum gravity seems to introduce a new level of unpredictability 
into physics over and above that normally associated with the uncertainty 
principle. This is because the metric of spacetime can fluctuate from being 
globally hyperbolic. In other words, the evolution is not completely determined 
by Cauchy data at past or future infinity. I present a number of axioms that the 
asymptotic Green functions should obey in any reasonable theory of quantum 
gravity. These axioms are the same as for ordinary quantum field theory in flat 
spacetime, except that one axiom, that of asymptotic completeness, is omitted. 
This allows pure quantum states to decay into mixed states. Calculations with 
simple models of topologically non-trivial spacetime indicate that such loss of 
quantum coherence will occur but that the effect will be very small except for 
fundamental scalar particles, if any such exist. 

1. Introduction 

In the eighteenth and nineteenth centuries it was believed that physics was 
completely deterministic. That is to say, the classical physical laws determined the 
exact values of the coordinates and the conjugate momenta of a physical system 
from their values at one time. In practice, the calculation usually became too 
complicated for systems of more than a few degrees of freedom, so people resorted 
to statistical treatments in which they did not attempt to predict the exact state of 
the system, but only certain gross properties such as the pressure or the 
temperature. The use of classical statistical mechanics was regarded only as a 
matter of convenience, however, in principle it was believed that one could predict 
the exact state of the system. 

With the advent of quantum mechanics in the 1920's, it was realized that one 
could predict exactly either the values of the co-ordinates or the values of the 
momenta, but not both. More precisely, the most that one could predict exactly 
were the values of a complete commuting set of observables and that only if the 
system happened to be in an eigenstate of that set of observables. Thus, roughly 
speaking, one's ability to make precise predictions was cut in half. As in the case of 

0010-3616/82/0087/0395/$04.20 

“I present a number of axioms that the asymptotic Green functions should
obey in any reasonable theory of quantum gravity. These axioms are the
same as for ordinary quantum field theory in flat spacetime, except that one
axiom, that of asymptotic completeness, is omitted. This allows pure
quantum states to decay into mixed states.”
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Is purity eternal? (continued)

“Difficulties for the Evolution of Pure States Into Mixed States”
Banks, Peskin and Susskind, Nucl. Phys. B 244, 125 (1984)

• building on: Ellis, Hagelin, Nanopoulos and Srednicki, Nucl. Phys. B 241, 381
(1984): dynamics associated to $ represented by a differential equation for ρ

ρ̇ =�Hρ 6= −i [H, ρ]

(EHNS studied phenomenology for neutral kaon systems and neutron interferometry)

• BPS looked for a general form for�Hρ. Assuming that

I ρ = ρ†

I Trρ = 1

are preserved by time evolution they (re)-discovered the Lindblad equation

ρ̇ = −i [H, ρ]− 1

2
hαβ

(
QαQβρ+ ρQβQα − 2QαρQβ

)
hαβ is a hermitian matrix of constants and Qα form a basis of hermitian matrices
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Is purity eternal? (continued)

The conclusions of BPS were lapidary

ABSTRACT 

Motivated by Hawking’s proposal that the quantum-mechanical density ma- 

trix p obeys an equation more general than the SchrGdinger equation, we study 

the general properties of evolution equations for p. We argue that any more 

general equation for p violates either locality or energy-momentum conservation. 

2 

end of the story?

Srednicki, Nucl. Phys. B 410, 143 (1993) [hep-th/9206056].

Non-locality implied by energy conservation is harmless and it does not lead to
macroscopic violations of causality...

Lindblad time evolution is still problematic since: “[...] loss of purity is
incompatible with the weakest possible form of Lorentz covariance.”
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Symmetry deformation at the Planck scale

Lukierski, Nowicki and Ruegg, Phys. Lett. B 293, 344 (1992)

“New quantum Poincare algebra and κ-deformed field theory”

Quantum group tools to obtain a Planck-scale κ-deformation of the Poincaré algebra.

• non-commutative space-time (κ-Minkowski): Majid and Ruegg, Phys. Lett. B 334,

348 (1994)

• quantum gravity phenomenology: Amelino-Camelia and Majid, Int. J. Mod. Phys. A

15, 4301 (2000)

• doubly special relativity: Amelino-Camelia, Int. J. Mod. Phys. D 11, 35 (2002)

• relative locality: Amelino-Camelia, Freidel, Kowalski-Glikman and Smolin, Phys. Rev. D

84, 084010 (2011)

a “parallel” line of research (Bais, Muller, Schroers, Meusberger...) explored the role of
quantum deformations of the Poincaré algebra in 3d gravity (G -deformation parameter)

The main goal of this talk is to show how the framework of symmetry deformation
in 3 and 4 D naturally leads to a Lindblad-type time evolution for quantum systems

MA: 1403.6457; Phys. Rev. D 90, 024016 (7 July 2014)
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quantum deformations of the Poincaré algebra in 3d gravity (G -deformation parameter)

The main goal of this talk is to show how the framework of symmetry deformation
in 3 and 4 D naturally leads to a Lindblad-type time evolution for quantum systems

MA: 1403.6457; Phys. Rev. D 90, 024016 (7 July 2014)

Michele Arzano — Purity is not eternal at the Planck scale 7/22



Symmetry deformation at the Planck scale

Lukierski, Nowicki and Ruegg, Phys. Lett. B 293, 344 (1992)

“New quantum Poincare algebra and κ-deformed field theory”

Quantum group tools to obtain a Planck-scale κ-deformation of the Poincaré algebra.
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Outline

• Topological particles and curved momentum space in 3d gravity

• Quantum double, deformed symmetries and Lindblad evolution

• 4d case: de Sitter momentum space and κ-deformed symmetries

• Deformed Lindlblad evolution from κ-Poincaré

• Conclusions and outlook
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Group momentum space from 3d gravity

Curved momentum space in flatland

• General relativity in 2+1 dimensions admits no local d.o.f.!

• Point particles “puncture” space-like slices → conical space (Deser, Jackiw, ’t Hooft, 1984)

• Euclidean plane with a wedge “cut-out” deficit angle α = 8πGm

identify

world lines

identify

Figure 1: The Kepler spacetime can be constructed by cutting out two wedges from a flat
Minkowski space. The faces are identified, such that two conical singularities arise in an
otherwise flat spacetime. In the rest frame of the each particle, the deficit angle of the conical
space is proportional to the mass of the particle.

The more serious problem has to do with the asymptotic structure of the spacetime at infinity.
The region far away from the particles is split into two segments in figure 1. Each segment is a
subset of Minkowski space. But on the wedges we have to apply non-trivial transition functions,
relating the Minkowski coordinates on one side to those on the other side. To find out what the
spacetime looks like at infinity, it would be nicer to have a single coordinate chart covering this
region. There is in fact a particular reason why we are interested in the asymptotic structure
of the Kepler spacetime. In order to quantize it in the end, we first have to set up a proper
classical Hamiltonian formulation. This requires a proper definition of an action principle for the
underlying field theory of Einstein gravity. And this again requires some kind of asymptotical
flatness condition to be imposed on the metric at infinity [14].

The asymptotic structure of the Kepler spacetime depends crucially on the relative motion of
the particles. If they are moving slowly, then far away from the particles the spacetime is also
conical. It looks almost like the gravitational field of a single particle, whose mass is equal to
the sum of the two masses of the real particles. The rest frame of this fictitious particle can be
identified with the centre of mass frame of the universe. If the particles are moving faster, the
apparent mass of the fictitious particle has to be replaced by the total energy of the system. It
also receives a spin, which represents the total angular momentum. But still, the universe looks
like a cone at infinity, and this cone defines the centre of mass frame.

Something strange happens when the relative motion of the particles exceeds a certain thresh-
old [15]. The definition of a centre of mass frame then breaks down, and the asymptotic structure
of the spacetime is no longer conical. Even more peculiar, the spacetime then contains closed
timelike curves [16, 17, 18]. Clearly, these are very interesting features of such a simple two
particle spacetime. But for our purpose we have to exclude them, again because we want to set
up a proper Hamiltonian framework. This requires a well defined causal structure of the space-

2

• Particle’s mass is a topological charge determined by a rotation hα ∈ SL(2,R)

• The three-momentum of a particle of mass m is obtained by “boosting” hα:
h = ghαg−1 with g ∈ SL(2,R)

• Deformed mass-shell condition 1
2
Tr(h) = cos(4πGm), i.e. h in conjugacy class of

rotations

Momenta of particles coupled to 3d gravity = elements of a non-abelian group!
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space is proportional to the mass of the particle.

The more serious problem has to do with the asymptotic structure of the spacetime at infinity.
The region far away from the particles is split into two segments in figure 1. Each segment is a
subset of Minkowski space. But on the wedges we have to apply non-trivial transition functions,
relating the Minkowski coordinates on one side to those on the other side. To find out what the
spacetime looks like at infinity, it would be nicer to have a single coordinate chart covering this
region. There is in fact a particular reason why we are interested in the asymptotic structure
of the Kepler spacetime. In order to quantize it in the end, we first have to set up a proper
classical Hamiltonian formulation. This requires a proper definition of an action principle for the
underlying field theory of Einstein gravity. And this again requires some kind of asymptotical
flatness condition to be imposed on the metric at infinity [14].

The asymptotic structure of the Kepler spacetime depends crucially on the relative motion of
the particles. If they are moving slowly, then far away from the particles the spacetime is also
conical. It looks almost like the gravitational field of a single particle, whose mass is equal to
the sum of the two masses of the real particles. The rest frame of this fictitious particle can be
identified with the centre of mass frame of the universe. If the particles are moving faster, the
apparent mass of the fictitious particle has to be replaced by the total energy of the system. It
also receives a spin, which represents the total angular momentum. But still, the universe looks
like a cone at infinity, and this cone defines the centre of mass frame.

Something strange happens when the relative motion of the particles exceeds a certain thresh-
old [15]. The definition of a centre of mass frame then breaks down, and the asymptotic structure
of the spacetime is no longer conical. Even more peculiar, the spacetime then contains closed
timelike curves [16, 17, 18]. Clearly, these are very interesting features of such a simple two
particle spacetime. But for our purpose we have to exclude them, again because we want to set
up a proper Hamiltonian framework. This requires a well defined causal structure of the space-

2

• Particle’s mass is a topological charge determined by a rotation hα ∈ SL(2,R)

• The three-momentum of a particle of mass m is obtained by “boosting” hα:
h = ghαg−1 with g ∈ SL(2,R)

• Deformed mass-shell condition 1
2
Tr(h) = cos(4πGm), i.e. h in conjugacy class of

rotations
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AdS momentum space: embedding coordinates

Parametrize group elements: h = u1+ pµ

κ
γµ;

where Tr(γµ) = 0 and κ = (4πG)−1

The unit determinant condition u2 + p2/κ2 = 1 =⇒
2992 H-J Matschull and M Welling

Figure 1. The group manifold SL(2), embedded in R4, using the coordinates pA = (pa, u),
with p2 suppressed. The picture to the right shows the two mass shells for m = π/6 (a deficit
angle of 60◦), obtained by intersecting the group manifold with the plane u = cosm, and the
lightcones emerging from 1 and −1 (on the back). The grid lines on the group manifold are the
Euler angles ρ and χ .

is always the same. They split into two subsets, the ‘particle’ and the ‘antiparticle’ mass
shell, consisting of the positive and negative timelike vectors of length sinm.

To visualize these mass shells, let us use the coordinates (pa, u) to embed the group
manifold into R4. The condition (2.17) defines a hyperboloid therein, which is shown in
figure 1. The mass shells are the intersections of this hyperboloid with the plane u = cosm.
We see that there is an upper and a lower mass shell, corresponding to the positive and
negative timelike vectors p, and that they look very similar to those of a relativistic point
particle. But there are also some features that are different.

One essential difference is that the range of m is bounded from below and from above.
We can now see that this is because the momentum u lives on the group manifold SL(2),
and not in flat Minkowski space. If the mass approaches the lower bound m = 0, then the
mass shells approach the ‘lightcones’ emerging from u = 1. They consist of those elements
of the group for which u = 1, so that p is a lightlike vector. But now there is a second pair
of lightcones, emerging from the group element u = −1. There, we have u = −1, and so
p is also lightlike. For m = π , the mass shells coincide with these lightcones.

Between these two pairs of lightcones, there is only a finite range of u, which coincides
with the range of the cosine in the mass-shell condition. The whole range of timelike
momenta u is covered by 0 < m < π , and on both sides of this interval the momentum
becomes lightlike. Using the conventional terminology, we can say that the particle is
‘massless’ for m = 0 as well as for m = π . This is what we already mentioned in the
beginning. It is the reason why the description of the particle in its own rest frame fails for
these values of m.

To see what goes wrong if we take the limit m → 0 or m → π in the rest frame of the
particle, consider the dreibein (2.2) and the spin connection (2.3). The momentum is then
given by

ū = emγ0 = cosm1+ sinmγ0. (2.19)

In the limits m → 0 and m → π , we have ū → ±1 and therefore p̄ → 0. The same
happens for a relativistic point particle if we take the limit m → 0 in the rest frame. The
momentum does not end up on the lightcone, but vanishes. To get a proper description
of lightlike particles, we have to exclude the special solutions ū = ±1 of the mass-shell

pµ are embedding coordinates on AdS space; basic relativistic properties:

• mass-shell condition: p2 = κ2 cos 4πGm = mκ

• Lorentz transformation: h′ = ghg−1, undeformed on pµ e.g. boost in the

1-direction g = e
1
2
ηγ2 

p′0 = p0 cosh η − p1 sinh η
p′1 = p1 cosh η − p0 sinh η
p′2 = p2 .
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Plane waves and non-commutative space

(Quantum) fields in momentum representation: φ(g) ∈ L2(SL(2,R), dµH )

A coordinate representation can be obtained via group Fourier transform

• A choice of “plane waves”: e : SL(2,R)→ C?(R2,1)

g → eg(x)
def
= e

iκ
2

Tr(Xg)

where x ∈ R2,1 are coordinates of X = xµγµ ∈ sl(2,R)

...the group structure is reflected in a non-commutative ?-product for plane waves

eg (x) ? eh(x) = e
iκ
2
Tr(Xg) ? e

iκ
2
Tr(Xh) = e

iκ
2
Tr(Xgh)

i) take g = g(p) and h = h(q) differentiating both sides w.r.t. pµ and qν

[xµ, xν ]? = iεµνσ xσ

functions of the dual spacetime variables form a non-commutative algebra!

ii) momentum coordinates obey a non abelian composition rule indeed

pµ⊕qµ = v(q) pµ+u(p) qµ+
1

κ
εµνσpνqσ = pµ+qµ+

1

κ
εµνσpνqσ+O(1/κ2) 6= qµ⊕pµ
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Deformed translation generators

Plane waves = eigenfunctions of translation generators Pµ
⇓

non-abelian composition of momenta = non-Leibniz action on product of plane waves

Pµ(eg ⊗ eh) = Pµ(eg )⊗ eh + eg ⊗ Pµ(eh) + 1
κ
εµνσPν(eg )⊗ Pσ(eh) +O(1/κ2)

the smoking gun of symmetry deformation...Pµ belong to a deformed algebra with κ as
a deformation parameter!

In Hopf algebraic terms the action above is encoded in a non-trivial co-product

∆Pµ = Pµ ⊗ 1+ 1⊗ Pµ +
1

κ
εµνσPν ⊗ Pσ ,

The Poincaré group is replaced by the quantum double of SL(2,R): D(SL(2,R))

what does this mean physically?
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Basic quantum theory

Elementary one-particle Hilbert space H: irreps of Poincaré group

• basis of H given by eigenstates of the translation generators

Pµ|k〉 = kµ|k〉

• action on dual space H∗ spanned by bras: Pµ〈k| = −kµ〈k|
• multi-particle states = symmetrized tensor products; action of Pµ via second

quantized operator

Pµ + (Pµ ⊗ 1+ 1⊗ Pµ) + (Pµ ⊗ 1⊗ 1+ 1⊗ Pµ ⊗ 1+ 1⊗ 1⊗ Pµ) + ...

• these notions suffice to derive the action of Pµ on operators...
consider e.g. a projector πk = |k〉〈k| seen as the “outer product” of a ket and a
bra namely πk = π(|k〉 ⊗ 〈k|) = |k〉〈k|

Pµ(πk ) = π(Pµ(|k〉 ⊗ 〈k|)) = π(Pµ|k〉 ⊗ 〈k| − |k〉 ⊗ 〈k|Pµ) = [Pµ, πk ]

i.e. just the familiar adjoint action
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Deformed quantum theory

Deformation of symmetry generators provide a generalization of these basic notions

• a basis |k(g)〉 for one-particle Hilbert space labelled by coordinates on a
non-abelian Lie group

Pµ|k(g)〉 = kµ(g)|k(g)〉

• for the action on bras the non-trivial structure of momentum space comes into play

Pµ〈k(g)| = kµ(g−1)〈k(g)|

• as seen before the composition rule of these eigenvalues is deformed

kµ(g)⊕ kµ(h) ≡ kµ(gh) 6= kµ(hg) , kµ(g)⊕ kµ(g−1) = kµ(gg−1) = kµ(1) = 0

In Hopf algebraic lingo =⇒ co-product ∆Pµ and antipode of S(Pµ) non-trivial

Key point: the action on operators will be deformed accordingly
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Deformed translations and Lindblad evolution in three dimensions

The deformed translation generators of D(SL(2,R)) in the “cartesian” basis Pµ:

∆Pµ = Pµ ⊗ 1+ 1⊗ Pµ +
1

κ
εµνσPν ⊗ Pσ , S(Pµ) = −Pµ .

The adjoint action of undeformed translation generators ⇒ quantum adjoint action

adPµ(ρ) = (id⊗ S)∆(Pµ) � ρ

with (a⊗ b) � c ≡ a c b...if ∆Pµ and S(Pµ) trivial ⇒ adPµ(ρ) = [Pµ, ρ]

For time translation generator P0 of D(SL(2,R)) we have the deformed adjoint action

adP0 (ρ) = [P0, ρ]− 1

κ
ε0ij P

iρP j

which can be rewritten in Lindlblad form as

ρ̇ = −i [P0, ρ]− 1

2
hij

(
P i P jρ+ ρP j P i − 2P jρP i

)
with “dissipation” matrix is given by

h =
i

κ

0 0 0
0 0 1
0 −1 0
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Some remarks

ρ̇ = −i [P0, ρ]− 1

2
hij

(
P i P jρ+ ρP j P i − 2P jρP i

)
, h =

i

κ

0 0 0
0 0 1
0 −1 0



• Lindblad evolution preserves trace and hermiticity of ρ by construction,
conservation of positivity is not automatically guaranteed

• BPS showed that

I h positive definite =⇒ positivity of ρ is preserved
I in addition h real =⇒ entropy increases with evolution
I energy is conserved if operators in dissipation term commute with P0

• Srednicki tells us that requirement of energy conservation not compatible with
Lorentz covariance

• Lindblad eq. above conserves energy and is Lorentz covariant...what’s going on?

BPS, Srednicki et al. restricted to real and positive definite h!
In our case h is not positive definite nor real

Further work needed to establish properties of our Lindblad evolution...
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A four dimensional example: de Sitter momentum space

• Early 90’s “deformation” of special relativistic symmetries: introduce UV-scale κ

• Structural analogies of momentum sector with 3d case only recently appreciated...

I momenta: coordinates on a Lie group AN(3) obtained form the Iwasawa
decomposition of SO(4, 1), geomtrically a sub-manifold of dS4

−p2
0 + p2

1 + p2
2 + p2

3 + p2
4 = κ2 ; p0 + p4 > 0

I dual Lie algebra “non-commutative space-time” coordinates

[xµ, xν ] = − i

κ
(xµδ

0
ν − xνδ

0
µ) .

The non-abelian composition of momenta in “flat slicing” or bicrossproduct coordinates

p0(k0, k) = κ sinh k0/κ+
k2

2κ
ek0/κ,

pi (k0, k) = ki ek0/κ,

p4(k0, k) = κ cosh k0/κ−
k2

2κ
ek0/κ.

reads k ⊕ l = (k0 + l0; k j e−
l0

κ + l j )
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• Structural analogies of momentum sector with 3d case only recently appreciated...

I momenta: coordinates on a Lie group AN(3) obtained form the Iwasawa
decomposition of SO(4, 1), geomtrically a sub-manifold of dS4
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κ-Poincaré and DSR

The non-abelian composition of momenta reflects a non-Leibniz action of
spatial translation generators

Ki (ek1 ⊗ ek2 ) = Ki (ek1 )⊗ ek2 + exp(−K0/κ)(ek1 )⊗ Ki (ek2 )

• Action of spatial rotations and time translations is unchanged

• deformed boost action (finite boosts saturate at the UV scale κ!)

[Nj ,Kl ] = iδlj

(
κ
2

(
1− e−

2K0
κ

)
+ 1

2κ
~K 2
)

+ i
κ

Kl Kj

and it’s very ugly and non-Leibniz on products of plane waves...

• deformed mass invariant ⇒ Lorentz invariant hyperboloid on AN(3): p4 = const.

Cκ(K) =

(
2κ sinh

(
K0

2κ

))2

− Ki K
i eK0/κ

Planck-scale deformation of energy-momentum relation...“DSR-like” features

in the limit κ −→∞ recover ordinary Poincaré algebra
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κ-Poincaré and DSR

The non-abelian composition of momenta reflects a non-Leibniz action of
spatial translation generators

Ki (ek1 ⊗ ek2 ) = Ki (ek1 )⊗ ek2 + exp(−K0/κ)(ek1 )⊗ Ki (ek2 )

• Action of spatial rotations and time translations is unchanged

• deformed boost action (finite boosts saturate at the UV scale κ!)

[Nj ,Kl ] = iδlj

(
κ
2

(
1− e−

2K0
κ

)
+ 1

2κ
~K 2
)

+ i
κ

Kl Kj

and it’s very ugly and non-Leibniz on products of plane waves...

• deformed mass invariant ⇒ Lorentz invariant hyperboloid on AN(3): p4 = const.

Cκ(K) =

(
2κ sinh

(
K0

2κ

))2

− Ki K
i eK0/κ

Planck-scale deformation of energy-momentum relation...“DSR-like” features

in the limit κ −→∞ recover ordinary Poincaré algebra
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The Lindblad evolution of“classical” time translation generators

In analogy with the 3d case we consider translation generators Pµ associated to
embedding coordinates pµ on dS4

In particular for the time translation generator P0 we have at leading order in κ

∆(P0) = P0 ⊗ 1+ 1⊗ P0 +
1

κ
Pm ⊗ Pm ,

S(P0) = −P0 +
1

κ
~P2 .

this basis of κ-Poincaré is called classical because

• action of Lorentz sector on Pµ in undeformed;

• mass-shell condition undeformed P2
0 − ~P2 = const

a straightforward calculation leads to a non-symmetric Lindblad equation

ρ̇ = −i [P0, ρ] +
i

κ
PmρPm −

i

κ
ρ ~P2
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Deformed hermiticity and Lorentz covariance

ρ̇ = −i [P0, ρ] +
i

κ
PmρPm −

i

κ
ρ ~P2

From a comparison with 3d case we would expect an extra ~P2ρ term...

In this case the non-trivial antipode S(P0) ⇒ deformed notion of hermitian adjoint:

(adP0 (·))† ≡ adS(P0)(·) ⇒ deformed skew-hermiticity condition (adP0 (·))† ◦ adP0 (·) = 0

While in 3d the Lindblad equation was covariant in “ordinary” sense, here:

• momenta kµ transform as ordinary Lorentz four-vectors and the translation
generators Pµ close undeformed Poincaré algebra

• the quantum adjoint action of boosts on an operator is deformed:

adNi (ρ) = [Ni , ρ] +
1

κ
[P0, ρ]Ni +

1

κ
εijm[Pj , ρ]Mm

• however the quantum adjoint actions of Ni and P0 satisfy

adadNi (P0)(·) = adNi (adP0 )(·)− adP0 (adNi )(·)

in this sense the κ-Lindblad equation follows a deformed notion of covariance
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Conclusions

Symmetry deformation provides a natural framework for dissipative
quantum time evolution

• In 3d gravity “topological back-reaction” leads to deformed translations

I group valued momenta ⇒ non-trivial co-product ⇒ covariant Lindblad eq.

I remarkable: correction term proportional to Newton’s constant G !

I check if deformed evolution leads to acceptable physics e.g. positivity of ρ?

• In 4d κ-Poincaré mimics structures found in 3d gravity

I group-valued momenta ⇒ non-trivial co-product AND antipode

I “classical basis” time translation ⇒ non-symmetric Lindblad eq. and
deformed covariance

I phenomenology of κ-Lindblad evolution? (Ellis et al.“Search for Violations of

Quantum Mechanics,” Nucl. Phys. B 241, 381 (1984) and following works)
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Outlook

• Deformed time-evolution is “basis-dependent”! =⇒ use to discriminate between
physical and un-physical momentum bases?

• Thorough investigation of unitarity in these models: is it violated or just deformed?

• and finally application to black hole quantum evolution...
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