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Construct noncommutative principal bundles deforming commutative principal
bundles with a Drinfeld twist.

If the twist is related to the structure group then we have a deformation of the
fiber, that becomes noncommutative.

If the twist is related to the automorphism group of the principal bundle, then
in general we have noncommutative deformations of the base space as well.

The twist deformation of the fiber is compatible with the twist deformation of
the base space so that we have noncommutative principal bundles with both
noncommutative fiber and base space.

New Hopf-Galois extensions from twisting of Hopf-Galois extensions.
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Motivations

Noncommutative Principal Bundles are not understood as well as noncom-
mutative Vector Bundles are. There are however relevant examples of NC
principal bundles (as Hopf-Galois extensions), e.g. the SU(2) fibration on
Connes-Landi noncommutative 4-sphere S4

θ (instanton bundle). In the con-
text of Drinfeld twist we provide a general theory, construct new examples and
recover in particular the instanton bundle on S4

θ .
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The notion of gauge group in NC geometry can be considered from many
different viewpoints:

• In NC vector bundles, gauge transformations are elements of the automor-
phism group of the vector bundle. Tipically unitary operators (if we have
hermitian NC vector bundles).

• In gauge theories on NC spaces gauge groups are again mainly U(N) or
GL(N) groups.

• A way to consider NC gauge transformations based on more general
groups (e.g. SU(N) or SO(N)) is via the Seiberg-Witten map between
commutative and noncommutative gauge transformations.

In geometry the gauge group is the group of authomorphisms of a Principal
bundle (that are the identity on the base space). Then it is interesting to study
NC gauge groups as authomorphisms of NC principal bundles.
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Twist techniques in deformation quanization allow to construct a quite wide
class of noncommutative algebras, and to consider differential calculi on these
algebras. With these techniques it is possible to define NC connections on
NC vector bundles [P.A, Schenkel 2012] (in the special case of NC equivariant
connections we recover the bimodule connections of Dubois-Violette)
I am interested in the study of NC connections on NC principal bundles.

Applications:
-new topological invariants? or combination of know ones (e.g. from Poisson
and de Rham cohomology).

-study of vierbein Gravity on NC spacetimes. (The principal bundle being the
SO(3,1)-bundle of orthonormal frames).
Castellani, Dimitrijević, 2012-14]

Remark: Noncommutativity from Twist deformation is not the most general
noncommutatity one can consider. It is however nontrivial (already semiclassi-
cally, at the Poisson level). We restrict the range of noncommutative algebras
we consider, as a bonus we are able to deform also the differential geometry.
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Given a Hopf algebra U and a twist F , there is Twist quantization functor
from commutative U -module algebras A = C∞(M) to noncommutative HF -
module algebras A?.

It extends to quantization of commutative vector bundles to noncommutative
vector bundles, and to their tensor products (functor of monoidal categories of
U -modules and A-bimodules and UF -modules and A?-bimodules).

Vector bundle maps are also canonically quantized.

Right connections on commutative vector bundles are similarly quantized in
NC right connections on NC vector bundles.

These quantized connections turn out to be also twisted Left connections

[Wess Group 2006, Aschieri Castellani 2010, Aschieri Schenkel 2012]

8



Theorem Let (H,R) be a quasi-triangular Hopf algebra and
(
Ω•,∧,d

)
be

graded quasi-commutative. A right connection ∇ on a quasi-commutative A-
bimodule W ∈ H

AMA is also a twisted left connection:

∇(a · w) = (R̄α . a) · (R̄α I ∇)(w) + (Rα . w)⊗A (Rα . da) . (1)

Rmk. If ∇ is H-equivariant we recover the notion of A-bimodule connection:

∇(a · w) = a · ∇(w) + (Rα . w)⊗A (Rα . da) .

[Mourad], [Dubois-Violette Masson], [Bresser, Mueller-Hoisssen, Dimakis, Sitarz], [Madore]

Connections on tensor product modules
Let ∇V : V → V ⊗Ω and ∇W : W →W ⊗Ω

∇V ⊕R∇W : V ⊗AW → V ⊗AW ⊗A Ω ,

defined by: ∇V ⊕R∇W := ∇V ⊗ id+ id⊗R∇W .

Associativity:
(
∇V ⊕R∇W

)
⊕R∇Z = ∇V ⊕R

(
∇W ⊕R∇Z

)
.

H-action compatibility: ξ I (∇V ⊕R∇W ) = (ξ I ∇V )⊕R (ξ I ∇W ) .

[Wess Group 2006, Aschieri Castellani 2010, Aschieri Schenkel 2012]
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Princ. G-Bundle

If the bundle P −→M is a principal G-bundle:
The G-action on P , P ×G→ P is fiber preserving
The G-action is free on P and
The G-action is transitive on the fibers
M ' P/G

i.e., the map
P ×G −→ P ×M P

(p, g) 7−→ (p, pg) is injective and surjective
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Description in terms of algebras

A ∼ C∞(P ) A⊗A ∼ C∞(P × P ) (Completion ⊗̂ is understood or consider

A the coordinate ring of an affine variety).
H ∼ C∞(G) A⊗H ∼ C∞(P ×G)

P ×G→ P dualizes to A −→ A⊗H
(p, g) 7→ pg a 7→ δA(a) = a0 ⊗ a1 (a0 ⊗ a1)(p, g) = a(pg)

B ∼ C∞(M) ' C∞(P/G) i.e. B is the subalgebra of A ∼ C∞(P )

of functions constant along the fibers
B = AcoH = {b ∈ A, δA(b) = b⊗ 1} ⊂ A

Then P ×G −→ P ×M P is bijective iff

χ : A⊗B A −→ A⊗H

a⊗B a′ 7−→ aa′0 ⊗ a
′
1 is bijective

A is anH-comodule algebra because of the compatibility: δA(aã) = δA(a)δA(ã).
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Def. of Hopf-Galois extension

Let H be a Hopf algebra and A be an H-comodule algebra,

B = AcoH ⊂ A is a Hopf-Galois extension if χ :A⊗BA→A⊗H is a bijection

Equivariance property of χ
If H and A are commutative alg. then χ is an algebra map, this is no more true in the NC case

We show that χ is compatible with the H-coaction (the G-action).

A is an H-comodule, we write A ∈MH

H is also an H-comodule with the Ad-action of H on H

Ad : H → H ⊗H G×G→ G
h 7→ h2 ⊗ S(h1)h3 (g, g′) 7→ g′−1g g′

Since A,H ∈MH then also A⊗H ∈MH , A⊗A ∈MH , A⊗B H ∈MH .

Hence χ is an H-comodule map (it is equivariant).

Moreover χ is compatible with multiplication ofA⊗H and ofA⊗BA from the left with elements
of A, i.e. it is a left A-module map
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Twist and 2-cocycles
Consider a Hopf algebra U , a twist F ∈ U ⊗ U deforms U in UF , i.e.

(U , ·,∆, ε, S) is twisted to (U , ·,∆F , ε, SF )

If H is paired to U the twist F defines a 2-cocycle (co-twist)

γ : H ⊗H → C[[~]]

h⊗ h′ 7→ γ(h⊗ h′) = 〈F , h⊗ h′〉

The notion of 2-cocycle γ of a Hopf alg.H doesn’t require H to be paired to U .

(H, ·,∆, ε, S) is twisted to (H, ·γ,∆, ε, Sγ)

Let A be an H-comodule algebra, a 2-cocycle γ deforms A in Aγ, i.e.,

(A, ·, δA) is twisted to (A, ·γ, δA)
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Deformation of the structure group H

We can therefore consider in (MHγ ,⊗γ)

χγ : Aγ ⊗γB Aγ −→ Aγ ⊗γ Hγ

a⊗γB a
′ 7−→ a ·γ a′0 ⊗

γ a′1

Theorem
χγ : Aγ⊗γBAγ −→ Aγ⊗γHγ is bijective iff χ : A⊗BA −→ A⊗H is bijective.

Proof
Follows from equivalence of monoidal categories {MH,⊗} and {MHγ ,⊗γ}
and from establishing a canonical isomorphism of the comodule coalgebras
(Hγ,∆γ, Ad) and (Hγ,∆γ, Adγ).

For a different proof, without use of canonical maps, see [Montgomery Schneider]
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Deformation of the base manifold M
Let Aut(P →M) be the group of Principal bundle automorphism (φ, f):

P
π
��

φ
// P
π
��

M
f

//M

φ(pg) = φ(p)g

Aut(P →M) and G actions commute.

We twist M via a subgroup of Aut(P →M).

In the dual picture we then consider a Hopf algebra K.
A is a left K-module algebra ρA : A→ A⊗K
H is trivially a left K-module (h→ 1⊗ h)
K is trivially a right H-module (h→ 1⊗ h)

Since the coactions

ρA : A→ K ⊗A and δA : A→ A⊗H

are compatible (commute) we have A ∈ KMH .
The A algebra structure is compatible with the K and H module structures.
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We now consider a 2-cocycle

σ : K ⊗K → C[[~]] ,

the corresponding deformations σA, σB, and

σχ : σA ⊗σB σA −→ σA⊗H

Theorem
σχ is bijective iff χ is bijective.

Example: SU(2) instanton on Connes-Landi S4
θ is the principal fibration

S7
θ → S4

θ

Has been proven to be Hopf-Galois in [Landi Suijlekom], [Brain Landi].
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Both Deformations: Base manifold and structure group
Finally we can deform the σA and H with the 2-cocycle γ and obtain

σχγ : σAγ ⊗σB σAγ −→ σAγ ⊗Hγ

Theorem
σχγ is bijective iff χ is bijective.
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