The Verlinde formula and higher-dimensional black hole entropy

Norbert Bodendorfer
Institute of Theoretical Physics
University of Warsaw
largely based on works in collaboration with Yasha Neiman, Thomas Thiemann, Andreas Thurn

XXXIII Max Born Symposium, Wroclaw, Poland
08.07.2014

Plan of the talk

(1) LQG in a nutshell
(2) Choice of variables and quantisation
(3) Black hole entropy computation
(4) Conclusion

Outline

(1) LQG in a nutshell

(2) Choice of variables and quantisation

(3) Black hole entropy computation

Loop quantum gravity (LQG) in a nutshell

What is LQG

Non-perturbative, background-independent quantisation of general relativity

- Canonical (Dirac) quantisation \leftarrow this talk (Dirac)
- Path integral (spinfoams)
- Group field theory

More generally: Techniques for background-independent \& non-perturabative QFT

Loop quantum gravity (LQG) in a nutshell

What is LQG

Non-perturbative, background-independent quantisation of general relativity

- Canonical (Dirac) quantisation \leftarrow this talk (Dirac)
- Path integral (spinfoams)
- Group field theory

More generally: Techniques for background-independent \& non-perturabative QFT
Where are these techniques applicable?

- d-dimensional general relativity + standard matter fields, $d \geq 3$
- Supergravity (e.g. $d=4,10,11$)

Focus of work: pure general relativity in $d=3,4$

Loop quantum gravity (LQG) in a nutshell

What is LQG

Non-perturbative, background-independent quantisation of general relativity

- Canonical (Dirac) quantisation \leftarrow this talk (Dirac)
- Path integral (spinfoams)
- Group field theory

More generally: Techniques for background-independent \& non-perturabative QFT
Where are these techniques applicable?

- d-dimensional general relativity + standard matter fields, $d \geq 3$
- Supergravity (e.g. $d=4,10,11$)

Focus of work: pure general relativity in $d=3,4$

Example applications

- Quantum cosmology (singularity resolution, CMB corrections, ...)
- Black hole entropy (microscopic state counting) \leftarrow this talk

Outline

(1) LQG in a nutshell

(2) Choice of variables and quantisation

(3) Black hole entropy computation

Choice of variables: Connection dynamics

Starting point: ADM formulation of $D+1$-dim. GR ${ }_{[A \text { rrowit, Deser, Miserer } 62]}$

spatial metric $q_{a b}, \quad$ momentum $P^{a b} \rightarrow\left\{q_{a b}, P^{c d}\right\}=\delta_{a}^{(c} \delta_{b}^{d)} \quad a=1, \ldots, D$ spatial tensor indices

Choice of variables: Connection dynamics

Starting point: ADM formulation of $D+1$-dim. GR [Armowit, Deser, Miserer '62] spatial metric $q_{a b}, \quad$ momentum $P^{a b} \rightarrow\left\{q_{a b}, P^{c d}\right\}=\delta_{a}^{(c} \delta_{b}^{d)} \quad a=1, \ldots, D$ spatial tensor indices

Choice of variables $3+1$: [Ashtekar '86; Barbero '94], $\quad D+1$: [NB, Thiemann, Thurn '11] $\mathrm{SO}(D+1)$ connection $A_{a l J}, \quad$ "hybrid vielbein" $\pi^{a l J}, \quad \rightarrow\left\{A_{a / J}, \pi^{b K L}\right\}=\delta_{a}^{b} \delta_{I J}^{K L}$ spatial metric $q_{a b}, \quad \rightarrow q q^{a b}=\beta^{2} / 2 \pi^{a / J} \pi^{b}{ }_{I J} \quad \beta \in \mathbb{R} \backslash\{0\}=$ free parameter extrinsic curvature $K_{a b} \quad$ hidden in $A_{a l J}=\Gamma_{a I J}(\pi)+\beta K_{a b} \pi_{l J}^{b} / \sqrt{q}+$ gauge $I, J=1, \ldots D+1$ internal $\mathrm{SO}(D+1)$ indices, $\quad[J] \operatorname{so}(D+1)$ Lie algebra indices, $\Gamma_{a l J}$ "hybrid" spin connection

Choice of variables: Connection dynamics

Starting point: ADM formulation of $D+1$-dim. GR [Armowit, Deser, Miserer '62] spatial metric $q_{a b}, \quad$ momentum $P^{a b} \rightarrow\left\{q_{a b}, P^{c d}\right\}=\delta_{a}^{(c} \delta_{b}^{d)} \quad a=1, \ldots, D$ spatial tensor indices

Choice of variables $3+1$: Ashtelear '86; Barbero '944], $\quad D+1$: [NB, Thiemann, Thurn '11] $\mathrm{SO}(D+1)$ connection $A_{\text {alJ, }}$, "hybrid vielbein" $\pi^{a l J}, \quad \rightarrow\left\{A_{a l}, \pi^{b \kappa L}\right\}=\delta_{a}^{b} \delta_{I J}^{K L}$ spatial metric $q_{a b}, \quad \rightarrow q q^{a b}=\beta^{2} / 2 \pi^{a l} \pi^{b}{ }_{\|}, \quad \beta \in \mathbb{R} \backslash\{0\}=$ free prameter extrinsic curvature $K_{a b} \quad$ hidden in $A_{a l J}=\Gamma_{a l J}(\pi)+\beta K_{a b} \pi_{J J}^{b} / \sqrt{q}+$ gauge $I, J=1, \ldots D+1$ internal $\mathrm{SO}(D+1)$ indices, $[I J] \operatorname{so}(D+1)$ Lie algebra indices, $\Gamma_{a l J}$ "hybrid" spin connection

Canonical phase space extension

Up to

$$
\left\{q_{a b}[A, \pi], P^{c d}[A, \pi]\right\}_{\{A, \pi\}} \approx \delta_{a}^{(c} \delta_{b}^{d)}
$$

- Gauß constraint $D_{a} \pi^{a l J}=0$ (SO(D+1) gauge transformations)
- Simplicity constraint $\pi^{a[J} \pi^{b \mid K L]}=0 \quad\left(\pi^{a / J} \propto n^{[I} \sqrt{q} e^{a \mid J]}\right.$, Plebanski constr.)

Holonomy-flux algebra and quantisation

Canonical Dirac quantisation (rigorous QFT methods)

[Rovelli, Smolin, Ashtekar, Isham, Lewandowski, Marolf, Mourao, Thiemann, ...]
(1) Holonomy-Flux algebra (point-splitting subalgebra of phase space functions)
(2) Ashtekar-Lewandowski measure (defines state, i.e. positive linear functional on the above algebra)
(3) GNS construction (state \Leftrightarrow representation)
(4) Imposition / regularisation of constraints (anomaly free for matter coupled $3+1$)
\Rightarrow Kinematical Hilbertspace $L^{2}\left(\overline{\mathcal{A}}, d \mu_{\mathrm{AL}}\right)$ of "generalised connections"

Holonomy along path γ

Flux through surface Σ, smearing function $n_{I J}$

Holonomy-flux algebra and quantisation

Canonical Dirac quantisation (rigorous QFT methods)
 [Rovelli, Smolin, Ashtekar, Isham, Lewandowski, Marolf, Mourao, Thiemann, ...]

(1) Holonomy-Flux algebra (point-splitting subalgebra of phase space functions)
(2) Ashtekar-Lewandowski measure (defines state, i.e. positive linear functional on the above algebra)
(3) GNS construction (state \Leftrightarrow representation)
(4) Imposition / regularisation of constraints (anomaly free for matter coupled 3+1)
\Rightarrow Kinematical Hilbertspace $L^{2}\left(\overline{\mathcal{A}}, d \mu_{\mathrm{AL}}\right)$ of "generalised connections"

Holonomy along path γ

Flux through surface Σ, smearing function $n_{I J}$

Simplicity constraints

Holonomies evaluated in a representation with heighest weight $\vec{\Lambda}$.
Simplicity constraint acting on holonomies $\Leftrightarrow \tau^{[I J} \tau^{K L]}=0$ equation on generators $\tau^{I J}$

$$
\Leftrightarrow \vec{\Lambda}=(\lambda, 0, \ldots, 0), \quad \lambda \in \mathbb{N}_{0} . \text { [Freidel, Krasnov, Puzio, '99] }
$$

Spin Networks: A basis in $L^{2}\left(\overline{\mathcal{A}}, d \mu_{\mathrm{AL}}\right)$

Colored graph embedded in D-dim. spatial slice σ :

- Edge: "Simple" representation λ of $S O(D+1)$
- Vertex: Invariant Map ι (gen. Clebsch-Gordan)
$|\psi\rangle=\operatorname{Tr}\left[\left(\otimes_{m: \text { edges }} \pi_{\lambda_{m}}\left(h_{\gamma_{m}}\right)\right)\left(\otimes_{n: \text { vertices }} \iota_{n}\right)\right]$
$h_{\gamma_{m}}$: Parallel transporter along γ_{m}
$\pi_{j_{m}}$: Representation λ_{m} of $\mathrm{SO}(D+1)$.

Spin network

= "generalised" Wilson loop

Spin Networks: A basis in $L^{2}\left(\overline{\mathcal{A}}, d \mu_{\mathrm{AL}}\right)$

Colored graph embedded in D-dim. spatial slice σ :

- Edge: "Simple" representation λ of $S O(D+1)$
- Vertex: Invariant Map ι (gen. Clebsch-Gordan)

$$
|\psi\rangle=\operatorname{Tr}\left[\left(\bigotimes_{m: \text { edges }} \pi_{\lambda_{m}}\left(h_{\gamma_{m}}\right)\right)\left(\bigotimes_{n: \text { vertices }} \iota_{n}\right)\right]
$$

$h_{\gamma_{m}}$: Parallel transporter along γ_{m}
$\pi_{j_{m}}$: Representation λ_{m} of $\mathrm{SO}(D+1)$.

Geometric operators:

- Area: $=\hat{A}(j) \quad$ (spatial codimension 1$)$

Spin network
= "generalised" Wilson loop

- Volume $=\hat{V}(\iota) \quad($ spatial codimension 0$)$

Spin Networks: A basis in $L^{2}\left(\overline{\mathcal{A}}, d \mu_{\mathrm{AL}}\right)$

Colored graph embedded in D-dim. spatial slice σ :

- Edge: "Simple" representation λ of $S O(D+1)$
- Vertex: Invariant Map ι (gen. Clebsch-Gordan)

$$
|\psi\rangle=\operatorname{Tr}\left[\left(\otimes_{m: \text { edges }} \pi_{\lambda_{m}}\left(h_{\gamma_{m}}\right)\right)\left(\otimes_{n: \text { vertices }} \iota_{n}\right)\right]
$$

$h_{\gamma_{m}}$: Parallel transporter along γ_{m}
$\pi_{j_{m}}$: Representation λ_{m} of $\mathrm{SO}(D+1)$.

Geometric operators:

- Area: $=\hat{A}(j) \quad$ (spatial codimension 1)

Spin network

= "generalised" Wilson loop

- Volume $=\hat{V}(\iota) \quad($ spatial codimension 0$)$
- Hints at discrete spacetime interpretation of spin network basis states
- Spins, invariant maps, and graphs are dynamical

Simplicity constraint acting on a vertex

- Problem: simplicity constraints second class due to holonomy-flux smearing

Simplicity constraint acting on a vertex

- Problem: simplicity constraints second class due to holonomy-flux smearing
- Solution: choice of a maximally commuting subset of constraints

Simplicity constraint acting on a vertex

- Problem: simplicity constraints second class due to holonomy-flux smearing
- Solution: choice of a maximally commuting subset of constraints
- Basic idea: Use simple representations in a given recouping scheme

$$
\vec{\Lambda}=(\lambda, 0, \ldots, 0) \quad \lambda=0,1,2, \ldots
$$

Induces unitary, recoupling structure preserving map to SU(2)-intertwiners via

$$
\begin{gathered}
\mathcal{I}_{\text {simple }, N}^{\mathrm{SO}(D+1)} \rightarrow \mathcal{I}_{N}^{\mathrm{SU}(2)} \\
\frac{1}{2} \lambda_{i} \mapsto j_{i}
\end{gathered}
$$

Simplicity constraint acting on a vertex

- Problem: simplicity constraints second class due to holonomy-flux smearing
- Solution: choice of a maximally commuting subset of constraints
- Basic idea: Use simple representations in a given recouping scheme

$$
\vec{\Lambda}=(\lambda, 0, \ldots, 0) \quad \lambda=0,1,2, \ldots
$$

Induces unitary, recoupling structure preserving map to SU(2)-intertwiners via

$$
\begin{gathered}
\mathcal{I}_{\text {simple }, N}^{\mathrm{SO}(D+1)} \rightarrow \mathcal{I}_{N}^{\mathrm{SU}(2)} \\
\frac{1}{2} \lambda_{i} \mapsto j_{i}
\end{gathered}
$$

- Solution depends on choice of recouping scheme (dynamical stability unclear)
- Dimension of intertwiner space independent of this choice (only this enters the black hole entropy computation)

Outline

(1) LQG in a nutshell

(2) Choice of variables and quantisation

(3) Black hole entropy computation

Black Hole Entropy: Boundary states

Recall (e.g. from condensed matter): Gauge fields + boundary \Rightarrow edge states

Black Hole Entropy: Boundary states

Recall (e.g. from condensed matter): Gauge fields + boundary \Rightarrow edge states
Sketch of derivation: [Ashtekar, Baez, Corichi, Krasnov '97-; ...; Engle, Noui, Perez, '09; NB, Thiemann, Thurn '13, NB '13]
(1) Model black hole as isolated horizon
\rightarrow spacetime manifold with boundary
(2) Boundary term in canonical transformation
\rightarrow boundary \Rightarrow boundary symplectic structure
(3) Poisson-algebra of boundary observables
\rightarrow needed for quantisation
(4) Compute boundary condition
\rightarrow relates bulk and boundary degrees of freedom
(5) Quantise boundary observable algebra and boundary condition

[http://math.ucr.edu/home/baez/blackhole.html]

Black Hole Entropy

Idea: Black hole entropy $=\log (\#$ boundary states with total area $A)$

Black Hole Entropy

Idea: Black hole entropy $=\log (\#$ boundary states with total area $A)$

Counting results:

(1) Quantise horizon theory [Ashtekar, Baez, Krasnov '00; Engle, Noui, Perez '09]
(2) In 3+1 dimensions: $\mathbf{S U}(2)$ Chern-Simons theory [Engle, Noui, Perez '09]

Verlinde formula gives dimension of horizon Hilbert space for a spin network

$$
N\left(j_{1}, \ldots, j_{P}, k\right)=\frac{2}{k+2} \sum_{d=1}^{k+1} \sin ^{2}\left(\frac{\pi d}{k+2}\right) \prod_{i=1}^{P} \frac{\sin \left(\frac{\pi d\left(2 j_{i}+1\right)}{k+2}\right)}{\sin \left(\frac{\pi d}{k+2}\right)}
$$

$j_{i}=$ representation labels,$\quad k=$ Chern-Simons level (cut-off for $\sum_{i} j_{i}$)
(3) In higher dimensions: Same result for dimension of Hilbert space, with $\lambda=2 j$ labelling the simple representation puncturing the horizon [NB '13, NB '14] (Follows from implementing simplicity constraint on horizon states)

Area of horizon: $8 \pi G \beta \sum_{i=1}^{P} \sqrt{\lambda_{i}\left(\lambda_{i}+D-1\right)}$

Black Hole Entropy

Selected results:

(1) Standard counting (all states with given total area) $S \propto A$
[Smolin '95; Krasnov '96; Rovelli '96; Ashtekar, Baez, Corichi, Krasnov '97; ...]
(2) Thermodynamic derivation: $S=A / 4 G$ [Ghosh, Perez '11]
(3) Analytic continuation to imaginary free parameter, large quantum numbers: $S=A / 4 G$ [Frodden, Geiller, Noui, Perez '12; Han '14]
Agreement with semiclassical effective action in same regime [NB, Neiman '13]
4) Calculations in higher dimensions reduce almost to $3+1$-dimensional case [NB '13] (Only difference: precise form of the area spectrum)
(5) For Lanczos-Lovelock gravity: Wald entropy [NB, Neiman '13]
(quantised area \rightarrow quantised Wald entropy)
(6) Computation works for general boundaries [NB '14]
\rightarrow "weak" holography (information available at boundary)
(7) Dual way of computing entanglement entropy of gravitational field
[Balachandran, Momen, Chandar '95; Husain '98; Donnelly '08; NB '14]

Outline

(1) LQG in a nutshell

(2) Choice of variables and quantisation

(3) Black hole entropy computation

4 Conclusion

Conclusion

- Reformulation of general relativity on a Yang-Mills phase space
- Gauge group SO ($D+1$)
- Constraints: ADM constraints + gauge invariance + simplicity
- Dirac quantisation by loop quantum gravity methods
- $L^{2}\left(\overline{\mathcal{A}}, d \mu_{\mathrm{AL}}\right)$
- Spin networks as basis
- Intertwiner spaces map unitarily to those of SU(2)
- Boundaries lead to boundary (edge) states
- Derive boundary symplectic structure
- Quantise boundary observable Poisson algebra
- Entropy via state counting
- $S=A / 4 G$ can be derived
- Verlinde formula in any dimension

Conclusion

- Reformulation of general relativity on a Yang-Mills phase space
- Gauge group SO ($D+1$)
- Constraints: ADM constraints + gauge invariance + simplicity
- Dirac quantisation by loop quantum gravity methods
- $L^{2}\left(\overline{\mathcal{A}}, d \mu_{\mathrm{AL}}\right)$
- Spin networks as basis
- Intertwiner spaces map unitarily to those of SU(2)
- Boundaries lead to boundary (edge) states
- Derive boundary symplectic structure
- Quantise boundary observable Poisson algebra
- Entropy via state counting
- $S=A / 4 G$ can be derived
- Verlinde formula in any dimension

Thank you for your attention!

