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Test particle in GR

The action for a free test-particle in GR can be written as

S =

∫
dτ
[
ẋµ(τ) eaµ(x(τ)) pa(τ)− N(ηabpapb −m2)

]
. (1)

δN ⇒ ηabpapb = m2 δpa ⇒ pa ∝ ẋµ(τ) eaµ(x(τ))

S ∝
∫

dτ gµν(x(τ))ẋµ(τ) ẋν(τ) , (2)

Amelino-Camelia, Freidel, Kowalski-Glikman, Smolin ’11
Kowalski-Glikman 13.

δxµ(τ)⇒ ẋν∇νxµ(τ) = 0 Geodesic motion
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Test particle in RL

The action for a free test-particle in RL can be written as

S =

∫
dτ
[
ṗα(τ)Eαa (p(τ)) xa(τ) + N(C(p)−m2)

]
. (3)

C(p) =
∫ p(τ)
geo,0 G

αβ dpα
dλ

dpβ
dλ

dλ square of geodesic distance from O to p(τ)

δN ⇒ C(p) = m2 δpα, δxa ⇒ ṗα = 0, ẋa(τ) = 0
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Non-local variables

Given a curve Γ : x = x(τ), one can always choose tetrads with vanishing spin
connections on Γ

(∂ν ē
a
µ(x)− ∂µēaν(x))|x=x(τ) = 0, (4)

Let us define the nonlocal variable X a as

X a(Γ; x(τ)) =

∫
Γτ

dσ ēaµ(x(σ))
dxµ

dσ
=

∫ τ

0
dσ ēaµ(x(σ)) ẋµ , (5)

and let us study its variation

δX a =

∫
Γ′

ēaµ Γ′ (x + δx)(ẋµ + δẋµ) dσ −
∫

Γ
ēaµ Γ(x)ẋµ dσ . (6)

Γ
τ

Γ
τ
'

δxμ(σ)

δxμ(τ)

Figure: The curves Γτ : xµ(σ) and Γ′
τ : xµ(σ) + ξµ(σ).
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The variation of the tetrads ēaµ can be decomposed into two parts:

δ ēaµ Γ(x) = δ1 ē
a
µ(x) + δ2 ē

a
µ(x), (7)

δ1 ē
a
µ Γ(x) = ēaµ Γ′ (x+δx)−ēaµ Γ(x+δx), δ2 ē

a
µ Γ(x) = ēaµ Γ(x+δx)−ēaµ Γ(x) = δxν ēaµ,ν Γ.

There exist a local Lorentz transformation Λ such that

ēaµ Γ′ (x) = Λa
b(x) ēbµ Γ(x), (8)

For an infinitesimal local Lorentz gauge transformation Λ(x) ' I + λ(x), keeping the
leading order terms we get

dλab

dσ
= −δxν ω̄ab

µ,ν Γ ẋµ = −Rab
νµ δx

µ ẋν → λab =

∫ σ

Rab
µν(σ′) δxµ(σ′) ẋν dσ′, (9)
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Hence, the total variation reads

δX a(τ) =

∫
Γτ

dσ λab ē
b
µ ẋµ +

∫
Γτ

dσ (ēµ,ν δx
ν + ēaν δx

ν
,µ) ẋµ =

=

∫
Γτ

dσ λab ē
b
µ ẋµ +

∫
Γτ

dσ
d

dσ
(ēaν δx

ν) =

= ēaν(x(τ)) δxν(x(τ)) +

∫
Γτ

dσ λab ē
b
µ ẋµ , (10)

where we used δxµ(0) = 0.
As a by-product for δxµ(τ) = xµ(τ + dτ)− xµ(τ) = ẋµ dτ , λ = 0 and one gets

dX a

dτ
= ēaµ(x(τ)) ẋµ . (11)

The total variation can be rewritten via an integration by part as

δX a =ēaν(x(τ)) δxν(x(τ)) +

∫
Γτ

dσ λab(σ) Ẋ b(σ) =

=ēaν(x(τ)) δxν(x(τ)) +

∫ τ

0
dσ (Xb(τ)− Xb(σ)) Rab

µν δx
µ(σ) ẋν . (12)

This expression provides a linear map between δxµ and δX a.
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δX a = 0⇔ δxµ = 0

Proof δX a = 0⇒ δxµ = 0

xµ = xµ(τ) is C∞, thus X a(τ) and δX a(τ) are C∞ too and one can shown[
dn

dτn
δX a(τ)

]∣∣∣∣
0

= 0⇒
[

dn

dτn
δxµ(τ)

]∣∣∣∣
0

= 0, ∀n ∈ N . (13)
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Equations of motion

We propose the following action

S =

∫
Γ
dτ
{
X a[Γ, x(τ)]Eαa ṗα + N(C(p) − m2)

}
, (14)

It can be shown that it has the proper limits (GR in flat momentum space and RL in
flat spacetime).
The variation with respect to xµ(τ) gives

δxS =

∫
dτ Eαa ṗα δX

a[x(τ)] ,

thus the only solution of δxS = 0 is

Eαa ṗα = 0→ ṗα = 0 .

From the variations with respect to pα and N, one gets

Ẋ a Eαa = N
∂C
∂pα

, C(p) − m2 = 0 .
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Hence, the following relation holds

Ẍ a =
d

dτ
(ẋµ ēaµ) = 0⇔ ẍµ + ēµa ∂ρē

a
ν ẋ

ν ẋρ = 0

and by noting that

Γµνρ = ēµa ∂(ρē
a
ν) ,

it follows that the trajectory in spacetime is a GEODESIC one (as in GR!)

ẍµ + Γµνρ ẋ
ν ẋρ = 0 .
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Symmetries

The action is manifestly invariant under general coordinate transformations, in both
momentum space and spacetime.

It is also invariant under residual, global Lorentz transformations.

From the Relative Locality perspective we are especially interested in translational
symmetries: in the case of the model of a particle moving in flat spacetime, the main
features of relativity of spacetime locality are encoded in that the fact that the
translations become momentum-dependent.

δxa = E a
α(p) ξα , ξ̇α = 0 .

Amelino-Camelia, Freidel, Kowalski-Glikman, Smolin ’11
Amelino-Camelia, M. Arzano, J. Kowalski-Glikman, G. Rosati, G. Trevisa ’12

Kowalski-Glikman ’13

The analogous transformation in curved spacetime (leaving the action invariant up to
a boundary term) is

δX a = E a
α(p) ξα , ξ̇α = 0 .

It maps the original geodesic, being the particle worldline, to another one (GEODESIC
DEVIATION), with the magnitude of translation depending on the momentum carried
by the particle.
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Let us look for the infinitesimal shift of the particle trajectory δxµ corresponding to
the translation above

E a
α(p) ξα = δX a = ēaν(x(τ)) δxν(τ) +

∫ τ

0
dσ (Xb(τ)− Xb(σ)) Rab

µν δx
µ(σ) ẋν . (15)

This equation implies

D2

Dτ2
δxµ − Rµνρσ ẋν ẋρ δxσ = 0 , (16)

where D/Dτ ≡ ẋµ∇µ is the covariant derivative projected along the worldline, subject
to the initial conditions

δxµ(0) = ēµa (x(0))E a
α(p) ξα ,

D

Dτ
δxµ

∣∣∣∣
0

= 0 . (17)

We can introduce the parameter ζ, for which δxµ = ēµa (x)E a
α(p) ζα, and get the

following equation

D2

Dτ2
ζα −

(
ēaµ(x)Eαa (p)Rµνρσ ēσb (x)Eb

β(p)
)
ẋν ẋρ ζβ = 0 , (18)

and it describes a congruence of particle worldlines in the spacetime whose curvature
is momentum-dependent. It might serve as a starting point of more
phenomenologically oriented investigations (gravitational lensing,..).
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Interaction

Let us consider a process with two incoming particles and an outgoing one.
The action for two particles this process is

S =

∫ t

−∞
dτ
[
X aEαa ṗα + Np

(
C(p)−m2

p

)]
+

∫ t

−∞
dτ
[
Y aEαa q̇α + Nq

(
C(q)−m2

q

)]
+

∫ ∞
t

dτ
[
Z aEαa ṙα + Nr

(
C(r)−m2

r

)]
− kαKα (p, q, r)

∣∣∣∣
τ̄

. (19)

kα being a Lagrange multiplier enforcing on the worldlines endpoints the constraint
(deformed law of energy-momentum conservation at the vertex)

Kα (p, q, r) = (p ⊕ q ⊕ (	r))α = 0.

p, x

q, y

K(p, q, r)
r, z
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The boundary term contributes with the constraints

Kα (p, q, r)
∣∣
t

= (p ⊕ q ⊕ (	r))α
∣∣
t

= 0, (20)

X a (t) = kβE a
α(p)

∂Kβ
∂pα

∣∣
t
, (21)

Y a (t) = kβE a
α(q)

∂Kβ
∂qα

∣∣
t
. (22)

Z a (t) = kβE a
α(r)

∂Kβ
∂rα

∣∣
t
. (23)

When kα changes, the X a transforms as

δX a
∣∣
t

= E a
α(p)

∂ (p ⊕ q ⊕ (	r))β

∂pα
δkβ

∣∣
t
, (24)

with analogous relations holding for the other particles. Assuming that we take the
initial condition for the geodesic deviation equation (17) at the interaction point, we
find that

δxµ
∣∣
t

= ēµa E a
α(p)

∂ (p ⊕ q ⊕ (	r))β

∂pα
δkβ

∣∣
t
. (25)

We see therefore that the structure of the interaction vertex in the case of curved
spacetime is essentially the same as in the flat spacetime case of Relative Locality.
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Conclusions

We gave a Lagrangian formulation for test particles in curved spacetime and
momentum space in which

the limits of flat momentum space and flat spacetime are described by GR and
RL, respectively,

the trajectory in spacetime is a geodesic one,

the generalization of momentum-dependent translations maps spacetime
geodesics among themeselves.

Perspective: phenomenology

in astrophysics (gravitational lensing),

in cosmology (CMB, neutrino cosmology).
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