On covariance of QFT on Moyal NC spaces under finite deformed Poincare' transformations, and "quantum reference" frames

Gaetano Fiore, Universitá "Federico II" and INFN, Napoli

33-th Max Born Symposium,

Wroclaw, July 7-10, 2014

Introduction

Simplest noncommutative spacetime: constant commutators (GMW):

$$
\begin{equation*}
\left[\hat{x}^{\mu}, \hat{x}^{v}\right]=i \mathbf{1} \theta^{\mu v} \quad \Leftrightarrow \quad\left[x^{\mu}, x^{v}\right]=i \mathbf{1} \theta^{\mu v} \tag{1}
\end{equation*}
$$

$\theta^{\mu \nu}=\theta^{v \mu}$. Privileged laboratory to investigate "noncommutative" QFT.
Algebra $\widehat{\mathscr{X}}$ of functions on Moyal space: generated by $\mathbf{1}, \hat{x}^{\mu}$ fulfilling (1).
Various inequivalent approaches to QFT since 1996:

- Path-integral: Filk 96, Douglas,Schwarz,Nekrasov, Seiberg-Witten,..
- Operator approaches (canonical, algebraic, or á la Wightman? Standard or twisted Poincaré covariance? ...?) Chaichian et al,Balachandran et al, Lizzi-Vitale, Abe, Zahn, F.-Wess, F.; Aschieri-Lizzi-Vitale, Lukierski et al,.... Our framework

Chaichian et al 2004, Wess 2004, Koch et al 2004, Oeckl 2000:
(1) are not Poincaré -invariant; but "twisted Poincaré" invariant.
(Alternative: Doplicher-Fredenhagen-Roberts 94-95, et Bahns, Piacitelli, ...: $\theta^{\mu \nu} \mapsto Q^{\mu \nu}$ central Lorentz-tensor. \Rightarrow Poincaré-covariant.)
q1) How to implement twisted Poincaré covariance in QFT? Namely, what is the deformed analog of Wightman axiom R?
R. Relativistic transformations of \mathscr{H} are represented by a strongly continuous unitary operator map $U:(A, y) \in P_{s} \equiv S L(2, \mathbb{C}) \ltimes \mathbb{R}^{4} \mapsto U(I, y) U(A, 0)$. \exists ! invariant state Ψ_{0} (the vacuum). Each field operator φ^{α} belongs to an irred. finite-dim representation S of $S L(2, \mathbb{C})$ and transforms as follows:

$$
\begin{equation*}
U(A, y) \varphi^{\alpha}(x) U^{-1}(A, y)=S_{\beta}^{\alpha}\left(A^{-1}\right) \varphi^{\beta}[\Lambda(A) x+y] \tag{2}
\end{equation*}
$$

Energy-momentum and Lorentz operators: self-adjoint $\sigma\left(P_{\mu}\right), \sigma\left(M_{\mu \nu}\right)$ s.t.

$$
\begin{equation*}
U(I, y)=e^{i \sigma(P) \cdot y}, \quad U(A, 0)=e^{i \sigma\left(M_{\mu \nu}\right) \omega^{\mu v}} \tag{3}
\end{equation*}
$$

$A=e^{s\left(M_{\mu \nu}\right) \omega^{\mu v}}, s \equiv$ fund. repr. of $s l(2, \mathbb{C}): s\left(M_{i j}\right)=\frac{1}{2} \varepsilon^{i j k} \tau^{k}, s\left(M_{i 0}\right)=\frac{i}{2} \tau^{i}$.
$\Lambda_{v}^{\mu}(A)=\frac{1}{2} \operatorname{tr}\left(\sigma^{\mu} A \sigma^{\nu} A^{\dagger}\right)$ is the projection $S L(2, \mathbb{C}) \mapsto S O^{+}(1,3)$.
So far incomplete answers to q1:

1. Based on the action of $H^{\prime} \equiv U_{\theta} \mathscr{P}=$ deformed Poincaré UEA; but within $H^{\prime} \nexists$ (full) analog of \mathscr{P}, nor of "infinitesimal" transformations; so describing finite ones by $e^{g}, g \in \mathscr{P}$, is not justified!
2. No clear distinction of active/passive transformations [lhs/rhs(2)].

Related questions:
q2) do coordinates \hat{x}, \hat{y} of different spacetime points commute?
q3) deform the commutation relations of a_{p}, a_{p}^{\dagger} for free fields?
[F.-Wess 07, F. 08]: Wightman axioms with twisted Poincaré covariance under the action of (the passive) $H^{\prime}=U_{\theta} \mathscr{P}$.

Here: sketch how to complete that work by providing the analog of (2), using the Hopf algebra H deformation of Fun(P). Stick to scalar fields. Noncommutativity of H, i.e. of the variables parametrizing changes of reference frames, require the latter to be "quantum objects".

Plan

1. Introduction
2. The dual Hopf $*$-algebras H, H^{\prime}, and their (co)module $*$-algebras
3. (Free) field: passive/active transf's and formulation of (2).
4. Discussion

The Hopf $*$-algebra $H \equiv \operatorname{Fun}_{\theta}(\mathrm{P}), H^{\prime} \equiv U_{\theta} \mathscr{P}$

$$
\begin{equation*}
x^{\mu} \mapsto x^{\prime \mu}=\Lambda_{v}^{\mu} x^{v}+y^{\mu} \equiv x^{v} \otimes \Lambda_{v}^{\mu}+\mathbf{1} \otimes y^{\mu} . \tag{4}
\end{equation*}
$$

regard $\mathbf{1}, \Lambda_{v}^{\mu}, y^{\mu}$ as functions on the group P . They actually generate Hopf $*$-algebra Fun (P); the counit ε, coproduct Δ, antipode S resp. give the identical, (twice) repeated, inverse change of frame:

$$
\begin{array}{ll}
\varepsilon\left(\Lambda_{v}^{\mu}\right)=\delta_{v}^{\mu}, & \Delta\left(\Lambda_{v}^{\mu}\right)=\Lambda_{v}^{\rho} \otimes \Lambda_{\rho}^{\mu}, \quad S\left(\Lambda_{v}^{\mu}\right)=\left(\eta \Lambda^{\top} \eta\right)_{v}^{\mu} \equiv \Lambda_{v}^{-1} \mu \\
\varepsilon\left(y^{\mu}\right)=0, & \Delta\left(y^{\mu}\right)=y^{v} \otimes \Lambda_{v}^{\mu}+\mathbf{1}_{H} \otimes y^{\mu}, \quad S\left(y^{\mu}\right)=-\Lambda^{-1}{ }_{v}^{\mu} y^{v} \tag{5}
\end{array}
$$

Coaction: $\quad \Delta^{r}: \mathscr{X} \rightarrow \mathscr{X} \otimes \operatorname{Fun}(\mathrm{P}), \quad f(x) \mapsto f\left(x^{\prime}\right)$,

$$
\begin{equation*}
(\mathrm{id} \otimes \varepsilon) \circ \Delta^{r}=\mathrm{id}, \quad(\Delta \otimes \mathrm{id}) \circ \Delta^{r}=\left(\mathrm{id} \otimes \Delta^{r}\right) \circ \Delta^{r} . \tag{6}
\end{equation*}
$$

NC analog? "Quantize" [Drinfeld 83] Fun(P), i.e. make it noncommut. Hopf dual to $H^{\prime} \equiv U_{\theta} \mathscr{P}$, so that (1) \& (4-6) imply $\left[\hat{x}^{\prime \mu}, \hat{x}^{\prime V}\right]=i 1 \theta^{\mu \nu}$:

The Hopf $*$-algebra $H \equiv \operatorname{Fun}_{\theta}(\mathrm{P}), H^{\prime} \equiv U_{\theta} \mathscr{P}$

$$
\begin{equation*}
\hat{x}^{\mu} \mapsto \hat{x}^{\prime \mu}=\Lambda_{v}^{\mu} \hat{x}^{\nu}+\hat{y}^{\mu} \equiv \hat{x}^{\nu} \otimes \Lambda_{v}^{\mu}+\mathbf{1} \otimes \hat{y}^{\mu} . \tag{4}
\end{equation*}
$$

regard $\mathbf{1}, \Lambda_{v}^{\mu}, \hat{y}^{\mu}$ as functions on the group P . They actually generate Hopf $*$-algebra $H=F u n_{\theta}(P)$; the counit ε, coproduct Δ, antipode S resp. give the identical, (twice) repeated, inverse change of frame:

$$
\begin{align*}
& \varepsilon\left(\Lambda_{v}^{\mu}\right)=\delta_{v}^{\mu}, \quad \Delta\left(\Lambda_{v}^{\mu}\right)=\Lambda_{v}^{\rho} \otimes \Lambda_{\rho}^{\mu}, \quad S\left(\Lambda_{v}^{\mu}\right)=\left(\eta \Lambda^{T} \eta\right)_{v}^{\mu} \equiv \Lambda^{-1}{ }_{v}^{\mu}, \tag{5}\\
& \varepsilon\left(\hat{y}^{\mu}\right)=0, \quad \Delta\left(\hat{y}^{\mu}\right)=\hat{y}^{\nu} \otimes \Lambda_{v}^{\mu}+\mathbf{1}_{H} \otimes \hat{y}^{\mu}, \quad S\left(\hat{y}^{\mu}\right)=-\Lambda^{-1}{ }_{v}^{\mu} \hat{y}^{v}
\end{align*}
$$

Coaction: $\quad \Delta^{r}: \hat{\mathscr{X}} \rightarrow \hat{\mathscr{X}} \otimes \quad H, \quad f(\hat{x}) \mapsto f\left(\hat{x}^{\prime}\right)$,

$$
\begin{equation*}
(\mathrm{id} \otimes \varepsilon) \circ \Delta^{r}=\mathrm{id}, \quad(\Delta \otimes \mathrm{id}) \circ \Delta^{r}=\left(\mathrm{id} \otimes \Delta^{r}\right) \circ \Delta^{r} . \tag{6}
\end{equation*}
$$

NC analog? "Quantize" [Drinfeld 83] Fun(P), i.e. make it noncommut. Hopf dual to $H^{\prime} \equiv U_{\theta} \mathscr{P}$, so that (1) \& (4-6) imply $\left[\hat{x}^{\prime \mu}, \hat{x}^{\prime \nu}\right]=i 1 \theta^{\mu \nu}$:

$$
\begin{equation*}
\left[\wedge_{\rho}^{\mu}, \cdot\right]=0, \quad \Lambda_{\rho}^{\mu} \Lambda_{\sigma}^{v} \eta^{\rho \sigma}=\eta^{\mu v} \mathbf{1}_{H}, \quad\left[\hat{y}^{\mu}, \hat{y}^{v}\right]=i\left(\theta^{\mu v} \mathbf{1}_{H}-\theta^{\rho \sigma} \Lambda_{\rho}^{\mu} \Lambda_{\sigma}^{v}\right) ; \tag{7}
\end{equation*}
$$

[Oeckl 00]. Restricted Lorentz: add $\operatorname{det} \Lambda=1, \Lambda_{0}^{0}>0 . \quad S L(2, \mathbb{C})$: [Podleś-Woronowicz 96].

H is noncommutative \Rightarrow "quantum" change of reference frame!;

 Central Λ_{v}^{μ} : relative orientation \& velocity of two frames "not quantized".$$
\left[\hat{y}^{\mu}, \hat{y}^{v}\right]=i\left(\theta^{\mu v}-\theta^{\rho \sigma} \Lambda_{\rho}^{\mu} \Lambda_{\sigma}^{v}\right) \mathbf{1} \equiv i \vartheta^{\mu v}(\Lambda) \mathbf{1} \neq 0
$$

the relative position of their space-time origins is quantized. Irreducible *-representations (irreps) of H : parametrized by eigenvalues $\lambda \in M_{4}(\mathbb{R})$ (with $\lambda \eta \lambda^{T}=\eta$) of Λ, and depend on $r:=\operatorname{rank} \vartheta(\lambda)$:

- If $r(\lambda)=4$, then after a Darboux transf. \hat{y}^{μ} fulfill Heisenberg CR in 4D phase space, and their exponentials the Weyl CR: up to unitary transformations, $\quad \exists$! irrep \sim Schrödinger irrep on $L^{2}\left(\mathbb{R}^{2}\right)$.
Maximal relative localization of the origins on coherent states.
- If $r(\lambda)=2$, after a Darboux transf irreps further parametrized by 2 real numbers y^{μ}; up to unitary transf.s, each is \sim Schrödinger irrep on $L^{2}(\mathbb{R})$. Maximal relative localization of origin on coherent states.
- If $r(\lambda)=0$, irreps further parametrized by 4 real numbers y^{μ}, and all their carrier spaces have $\operatorname{dim}=1$: "classical changes of frame". (note: $\lambda=I \Rightarrow r=0$).

Chaichian et al, Wess, Koch et al 04: (1) are covariant under action of $H^{\prime} \equiv U_{\theta} \mathscr{P}=$ "twisted" $U \mathscr{P} ; \quad \cup \mathscr{P}, H^{\prime}$ have:

- same $*$-algebra over $\mathbb{C}[[\theta]]$: generated by real $M_{\mu \nu}, P_{\mu}, \mathbf{1}_{H^{\prime}}$ fulfilling

$$
\begin{align*}
& {\left[M_{\omega}, M_{\omega^{\prime}}\right]=2 i\left(\omega \eta \omega^{\prime}-\omega^{\prime} \eta \omega\right)^{\mu v}} \\
& {\left[M_{\omega}, P_{\mu}\right]=2 i P_{v}(\omega \eta)_{\mu}^{v}, \quad\left[P_{\mu}, P_{v}\right]=0} \tag{8}
\end{align*}
$$

here: $\quad M_{\omega}:=\omega^{\mu v} M_{\mu v}, \quad \eta \equiv$ Minkowski metric; and same counit ε^{\prime}. \Rightarrow Same irreps, hence same classification of elementary particles!

- coproducts $\Delta_{0}^{\prime}, \Delta^{\prime}$ related by $\Delta_{0}^{\prime}(g) \longrightarrow \Delta^{\prime}(g)=\mathscr{F} \Delta_{0}^{\prime}(g) \mathscr{F}^{-1}$, unitary twist [Drinfel'd 83] $\mathscr{F} \equiv \mathscr{F}^{\alpha} \otimes \mathscr{F}{ }_{\alpha}:=\exp \left(\frac{i}{2} \theta^{\mu \nu} P_{\mu} \otimes P_{v}\right)$:

$$
\begin{align*}
& \Delta^{\prime}\left(M_{\omega}\right)=M_{\omega} \otimes \mathbf{1}_{H^{\prime}}+\mathbf{1}_{H^{\prime}} \otimes M_{\omega}+P_{\mu}[\omega \eta, \theta \eta]_{v}^{\mu} \otimes P^{v}, \\
& \Delta^{\prime}\left(P_{\mu}\right)=P_{\mu} \otimes \mathbf{1}_{H^{\prime}}+\mathbf{1}_{H^{\prime}} \otimes P_{\mu}, \tag{9}
\end{align*}
$$

- Same antipode S^{\prime}, if \mathscr{F} is as above.

Triangular structure $\mathscr{R}=\mathscr{F}_{21} \mathscr{F}^{-1}=\exp \left(-i \theta^{\mu \nu} P_{\mu} \otimes P_{v}\right)$.

As expected, in $H \quad \Delta, \varepsilon, S$ are undeformed, only m is deformed: while in $H^{\prime} m^{\prime}, \boldsymbol{\varepsilon}^{\prime}, S^{\prime}$ are undeformed, only Δ^{\prime} is deformed. In addition:

- Lorentz Hopf subalgebra $H_{L} \subset H$ generated by $\mathbf{1}_{H}, \Lambda_{\nu}^{\mu}$ is undeformed $\Rightarrow H_{L} \simeq$ algebra of functions on $S O^{+}(1,3)$: only the position of the origin of a frame w.r.t. another one is "quantum".
- Whereas in H^{\prime} translation Hopf subalgebra $H_{T}^{\prime} \subset H^{\prime}$ undeformed. Mild deformations!

Sweedler notation:

$$
\begin{aligned}
& \Delta(a)=a_{(1)} \otimes a_{(2)} \equiv \sum_{l} a_{(1)}^{\prime} \otimes a_{(2)}^{\prime} \\
& [\Delta \otimes \text { id }) \circ \Delta](a)=a_{(1)} \otimes a_{(2)} \otimes a_{(3)} \equiv \sum_{l} a_{(1)}^{\prime} \otimes a_{(2)}^{\prime} \otimes a_{(3)}^{\prime} \\
& \Delta_{0}^{\prime}(g)=g_{(1)} \otimes g_{(2)} \equiv \sum_{l} g_{(1)}^{\prime} \otimes g_{(2)}^{\prime} \\
& \Delta^{\prime}(g)=g_{(\hat{1})} \otimes g_{(\hat{2})} \equiv \sum_{l} g_{(\hat{1})}^{\prime} \otimes g_{(\hat{2})}^{\prime}
\end{aligned}
$$

Dual $H, H^{\prime}: \exists$ nondegenerate bilinear map $\langle\rangle:, H^{\prime} \otimes H \rightarrow \mathbb{C}$ (pairing) s.t.

$$
\begin{array}{ll}
\left\langle g, \mathbf{1}_{H}\right\rangle=\varepsilon^{\prime}(g), & \left\langle\mathbf{1}_{H^{\prime}}, b\right\rangle=\varepsilon(b), \\
\langle g, b c\rangle=\left\langle g_{(\hat{1})}, b\right\rangle\left\langle g_{(\hat{2})}, c\right\rangle, & \langle g h, b\rangle=\left\langle g, b_{(1)}\right\rangle\left\langle h, b_{(2)}\right\rangle, \\
\left\langle S^{\prime}(g), b\right\rangle=\langle g, S(b)\rangle, & \\
\left\langle g^{*^{\prime}}, b\right\rangle=\overline{\left\langle g, S(b)^{*}\right\rangle,} & \left\langle g, b^{*}\right\rangle=\overline{\left\langle S^{\prime}(g)^{*^{\prime}}, b\right\rangle} .
\end{array}
$$

Here $\langle\rangle:, H^{\prime} \otimes H \rightarrow \mathbb{C}$ recursively determined from the relations

$$
\begin{array}{lll}
\left\langle\mathbf{1}_{H^{\prime}}, \mathbf{1}_{H}\right\rangle=1, & \left\langle\mathbf{1}_{H^{\prime}}, \Lambda_{v}^{\mu}\right\rangle=\delta_{v}^{\mu}, & \left\langle\mathbf{1}_{H^{\prime}}, \hat{y}_{\mu}\right\rangle=0 \\
\left\langle M_{\omega}, \mathbf{1}_{H}\right\rangle=0, & \left\langle M_{\omega}, \Lambda_{v}^{\mu}\right\rangle=2 i(\omega \eta)_{v}^{\mu}, & \left\langle M_{\omega}, \hat{y}^{v}\right\rangle=0, \\
\left\langle P_{\mu}, \mathbf{1}_{H}\right\rangle=0, & \left\langle P_{\mu}, \Lambda_{v}^{\mu}\right\rangle=0, & \left\langle P_{\mu}, \hat{y}^{v}\right\rangle=i \delta_{v}^{\mu},
\end{array}
$$

as in the undeformed case. $H \simeq \star$-deformation [Drinfel'd] of $\operatorname{Fun}(\mathrm{P})$. H has coquasitriangular structure [Majid] $\langle\mathscr{R}, \cdot \otimes \cdot\rangle$, and (7) amount to

$$
\begin{equation*}
b c=\left\langle\mathscr{R}, c_{(1)} \otimes b_{(1)}\right\rangle c_{(2)} b_{(2)}\left\langle\mathscr{R}_{21}, c_{(3)} \otimes b_{(3)}\right\rangle \tag{12}
\end{equation*}
$$

Twisting $\cup \mathscr{P}$-module \& Fun (P)-comodule $*$-algebras

Let \mathscr{A} be a $U \mathscr{P}$-module $*$-algebra, $V(\mathscr{A})$ the underlying vector space. $V(\mathscr{A})[[\theta]]$ gets a H-module $*$-algebra \mathscr{A}_{\star} when endowed with the product

$$
\begin{equation*}
a \star a^{\prime}:=\left(\overline{\mathscr{F}}^{\alpha} \triangleright_{c} a\right)\left(\overline{\mathscr{F}}_{\alpha} \triangleright_{c} a^{\prime}\right) . \quad \overline{\mathscr{F}}^{\alpha} \otimes \overline{\mathscr{F}}_{\alpha}=\mathscr{F}^{-1} \tag{13}
\end{equation*}
$$

I.e. \star is associative by the cocycle condition for \mathscr{F}, fulfills $\left(a \star a^{\prime}\right)^{*}=a^{\prime *} \star a^{*}$ and

$$
\begin{equation*}
g \triangleright_{c}\left(a \star a^{\prime}\right)=\left[g_{(\hat{1})} \triangleright_{c} a\right] \star\left[g_{(\hat{2})} \triangleright_{c} a^{\prime}\right] . \tag{14}
\end{equation*}
$$

(deformed Leibniz rule). From $\mathscr{A} \otimes \mathscr{B}$ the H^{\prime}-module $*$-algebra $(\mathscr{A} \otimes \mathscr{B})_{\star}$: setting $a \otimes_{\star} b:=\left(a \otimes \mathbf{1}_{\mathscr{R}}\right) \star\left(\mathbf{1}_{\&} \otimes b\right)$ one finds

$$
\begin{equation*}
\left(a \otimes_{\star} b\right) \star\left(a^{\prime} \otimes_{\star} b^{\prime}\right)=a \star\left(\mathscr{R}^{(2)} \triangleright_{c} a^{\prime}\right) \otimes_{\star}\left(\mathscr{R}^{(1)} \triangleright_{c} b\right) \star b^{\prime}, \tag{15}
\end{equation*}
$$

so \otimes_{\star} is the braided tensor product associated to \mathscr{R}; involutive, as $\mathscr{R} \mathscr{R}_{21}=\mathbf{1} \otimes \mathbf{1}$. If \mathscr{A} defined by generators a_{i} and relations, then also \mathscr{A}_{\star} is, with same PBW series. One can define a linear map $\wedge: f \in \mathscr{A} \rightarrow \hat{f} \in \mathscr{A}_{\star}$ (Weyl map) by the eq.

$$
\begin{equation*}
f\left(a_{1}, a_{2}, \ldots\right) \star=\hat{f}\left(a_{1} \star, a_{2} \star, \ldots\right) \quad \text { in } V(\mathscr{A})=V(\mathscr{A} \star) \tag{16}
\end{equation*}
$$

Change notation: $\quad a_{i} \star a_{j} \leadsto \hat{a}_{i} \hat{a}_{j}, \hat{f}\left(a_{i} \star\right) \leadsto \hat{f}\left(\hat{a}_{i}\right), \mathscr{A}_{\star} \leadsto \widehat{\mathscr{A}}$.
$U \mathscr{P}$-module algebras \mathscr{X} of polynomials in $x, \mathscr{X}^{n}:=\mathscr{X}^{\otimes n}, P_{\mu}=i \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}^{\mu}}$. Let $x_{1}^{\mu} \equiv x^{\mu} \otimes \mathbf{1} \otimes \ldots \otimes \mathbf{1}, \quad x_{2}^{\mu} \equiv \mathbf{1} \otimes x^{\mu} \otimes \ldots \otimes \mathbf{1}, \ldots$ Choose $\mathscr{A}=\mathscr{X}^{n}$:

$$
\begin{equation*}
a\left(x_{i}\right) \star b\left(x_{j}\right)=m\left[\exp \left[-\frac{i}{2} P_{\mu} \theta^{\mu v} \otimes P_{v}\right]\left(\triangleright_{c} \otimes \triangleright_{c}\right)(a \otimes b)\right], \tag{17}
\end{equation*}
$$

Applying it to power series expansions,

$$
\begin{equation*}
e^{i p \cdot x_{i}} \star e^{i q \cdot x_{j}}=e^{i q \cdot x_{j}} \star e^{i p \cdot x_{i}} e^{-i p^{t} \theta q} \quad \Leftrightarrow \quad e^{i p \cdot \hat{x}_{i}} e^{i q \cdot \hat{x}_{j}}=e^{i q \cdot \hat{x}_{j}} e^{i p \cdot \hat{x}_{i}} e^{-i p^{t} \theta q} \tag{18}
\end{equation*}
$$

\star defined on larger function spaces using Fourier transforms $\tilde{a}(p), \tilde{b}(p)$:

$$
\begin{equation*}
a\left(x_{i}\right) \star b\left(x_{j}\right)=\int d^{4} p \int d^{4} q e^{i\left(p \cdot x_{i}+q \cdot x_{j}-p^{t} \theta q / 2\right)} \tilde{a}(p) \tilde{b}(q) \tag{19}
\end{equation*}
$$

(19) makes sense for $a \in \mathscr{S} \equiv \mathscr{S}\left(\mathbb{R}^{4}\right)$, $b \in \mathscr{S}^{\prime}$, if $i=j ; a, b \in \mathscr{S}^{\prime}$, if $i \neq j$.
(Note: (17) implies $\left[x_{i}^{\mu}, x_{j}^{\nu}\right]=\mathbf{1} i \theta^{\mu \nu}, \operatorname{not}\left[x_{i}^{\mu}, x_{j}^{\nu}\right]=\mathbf{1} i \theta^{\mu v} \delta_{i j}$!)
Neither the differential nor the integral calculus are deformed.

A right H-comodule $*$-algebra is also a left H^{\prime}-module $*$-algebra $\widehat{\mathscr{A}}$, and conversely. The action $\triangleright: H^{\prime} \otimes \widehat{\mathscr{A}} \rightarrow \widehat{\mathscr{A}}$ and the coaction $\Delta^{r}: \widehat{\mathscr{A}} \rightarrow \widehat{\mathscr{A}} \otimes H$ are determined by each other through the formulae

$$
\begin{array}{r}
\Delta^{r}(a)=a_{(\overline{1})} \otimes a_{(2)} \quad \Rightarrow \quad g \triangleright a=a_{(\overline{1})}\left\langle g, a_{(2)}\right\rangle \\
\Delta^{r}(a)=\mathscr{T}(\triangleright \otimes \cdot)(a \otimes \mathbf{1})=\sum_{J \in \mathscr{J}}\left(e^{J} \triangleright a\right) \otimes e_{J} \tag{21}
\end{array}
$$

where $\left\{e_{J}\right\}_{J \in \mathscr{J}}$ is any basis of $V(H),\left\{e^{J}\right\}_{J \in \mathscr{J}} \subset H^{\prime}$ the dual basis and

$$
\begin{align*}
\mathscr{T} & =\sum_{J \in \mathscr{\mathscr { V }}} e^{J} \otimes e_{J} \in H^{\prime} \otimes H \quad \text { (canonical element). } \tag{22}\\
\mathscr{T}^{-1} & =\sum_{J \in \mathscr{J}} e^{J} \otimes S\left(e_{J}\right)=\sum_{J \in \mathscr{J}} S^{\prime}\left(e^{J}\right) \otimes e_{J}=\sum_{I, J \in \mathscr{J}} s_{I}^{J} e^{\prime} \otimes e_{J} \tag{23}\\
& =\mathscr{T}^{*} \otimes * \quad \text { if } H, H^{\prime} \equiv * \text {-alg. }
\end{align*}
$$

$\widehat{\mathscr{X}}$ is a left H^{\prime}-module and a right H-comodule $*$-algebra resp. under

$$
P_{\mu} \triangleright \hat{x}^{\rho}=i \delta_{\mu}^{\rho}, \quad M_{\mu \nu} \triangleright \hat{x}^{\rho}=i\left(\delta_{v}^{\rho} \hat{x}_{\mu}-\delta_{\mu}^{\rho} \hat{x}_{v}\right), \quad \Delta^{r}\left(\hat{x}^{\mu}\right)=\Lambda_{v}^{\mu} \hat{x}^{v}+\hat{y}^{\mu} .
$$

Extend Δ^{r} to $\widehat{\mathscr{S}}, \widehat{\mathscr{S}}^{r}$ by the generalized basis $\left\{e_{p}\right\}_{p \in \mathbb{R}^{4}}, e_{p}(\hat{x})=e^{-i p \hat{x}}$
$e^{i p \cdot(\Lambda \hat{x}+\hat{y})}=e^{i p \cdot \hat{y}} e^{i \Lambda^{-1} p \cdot \hat{x}}=e^{i p \cdot \hat{y}} \int d^{4} q \delta\left(q-\Lambda^{-1} p\right) e^{i q \cdot \hat{x}}=e^{i p \cdot \hat{y}} \int d^{4} q \int \frac{d^{4} z}{(2 \pi)^{4}} e^{i(\Lambda q-p) \cdot z} e^{i q \cdot \hat{x}} ;$
this leads us to define $\Delta^{r}\left(e_{p}\right)$ as the following combination of e_{q} :

$$
\begin{equation*}
\Delta^{r}\left(e_{p}\right)=" e^{-i p \cdot \hat{y}} e_{\Lambda^{-1} p}^{\prime \prime}=e^{-i p \cdot \hat{y}} \int d^{4} q \int \frac{d^{4} z}{(2 \pi)^{4}} e^{i(\Lambda q-p) \cdot z} e_{q}, \tag{24}
\end{equation*}
$$

provided we enlarge H so as to contain 'functions' of \hat{y}, Λ like $e^{i p \cdot \hat{y}}, e^{i \Lambda q \cdot z}$.

$$
\begin{align*}
& \Delta\left(e^{i p \cdot \hat{y}}\right)^{\prime \prime}=e^{i p_{\mu}\left(y^{v} \otimes \Lambda_{v}^{\mu}+1 H^{\otimes y^{\mu}}\right) \prime \prime}=e^{-i p \cdot \hat{y}} \int d^{4} q \int \frac{d^{4} z}{(2 \pi)^{4}} i q \cdot(\hat{y}-z) \otimes e^{i p \cdot(\Lambda z+\hat{y})}, \\
& \Delta\left(e^{i p \cdot \Lambda a}\right) "=e^{i p_{\mu}\left(\Lambda_{v}^{p} \otimes \Lambda_{p}^{\mu}\right) a^{v} \prime \prime}=\int d^{4} q \int \frac{d^{4} z}{(2 \pi)^{4}} e^{i p \cdot(\Lambda a-z)} \otimes e^{i q \cdot \wedge z} \tag{25}
\end{align*}
$$

Scalar field of mass m

First a scalar field. Abbreviate $L=(y, \Lambda), L x=\Lambda x+y$. (2) becomes

$$
\begin{equation*}
\varphi(L x)=U(L) \varphi(x) U^{-1}(L), \quad \Leftrightarrow \quad \varphi\left(f^{L}\right)=U(L) \varphi(f) U^{-1}(L) \tag{26}
\end{equation*}
$$

Lhs: passive Poincaré transformation due to reference frame change. It transforms the \mathscr{S}^{\prime} part of the field, or equivalently test functions $f \in \mathscr{S} \mapsto f^{L} \in \mathscr{S}, f^{L}(x)=f\left(L^{-1} x\right)$; not the state $\psi \in \mathscr{H}$ of the physical system nor $\alpha \in \mathscr{A} \equiv$ algebra of operators on \mathscr{H}.

Rhs: active Poincaré transformation. It transforms $\Psi \mapsto U(L) \Psi$, $\alpha \mapsto U(L) \alpha U^{-1}(L)$, not $f \in \mathscr{S}, \mathscr{S}^{\prime}$, not the \mathscr{S}^{\prime} part of the field.
To deform (2) we should separatly deform passive, active transf., then impose equalities like (26) or (2) when active and passive transformations are parametrized by the same L.

First a small detour: we recall the physical difference between passive, active transf. thinking of an "experiment of elementary particle physics"...

state Ψ
represented by wavefunctions
$\Psi(x)$ w.r.t. \mathbb{R}

Why not? Particle physics has begun playing billiard....

state Ψ
represented by wavefunctions
$\Psi(x)$ w.r.t. $\mathbb{R}, \Psi^{\prime}\left(x^{\prime}\right)$ w.r.t. \mathbb{R}^{\prime}.
$\Psi(x)=\Psi^{\prime}\left(x^{\prime}\right)=\Psi^{\prime}(L x) \quad$ (up to a phase)
$\psi \mapsto \psi^{\prime} \equiv \psi^{L}, \quad \psi^{L}(x)=\psi\left(L^{-1} x\right)$, is the passive transf. parametrized by L Its existence is independent of relativistic invariance of particle physics. (It is defined in the same way for classical and quantum theories.)

$U(L): \Psi \mapsto \Psi^{U}$ is the unitary active transformation parametrized by L. It exists because of the relativistic invariance of particle physics. (in classical theories defined similarly.)

state Ψ^{U} : appears to \mathbb{R}
as Ψ appears to \mathbb{R}^{\prime}.
Represented by wavefunctions $\Psi^{\mathrm{U}}(\mathrm{x})$ w.r.t. $\mathscr{R}, \Psi^{\mathrm{U}}\left(\mathrm{x}^{\prime}\right)$ w.r.t. \mathscr{R}^{\prime}
state Ψ
represented by wavefunctions
$\boldsymbol{\Psi}(\mathrm{x})$ w.r.t. $\mathbb{R}, \Psi^{\prime}\left(\mathrm{x}^{\prime}\right)$ w.r.t. \mathbb{R}^{\prime}.
$\Psi(x)=\Psi^{\prime}\left(x^{\prime}\right)=\Psi^{\prime}(L x)$ (up to a phase)

Consequently $\quad \psi^{U}\left(x^{\prime}\right)=\psi^{\prime}\left(x^{\prime}\right)$


```
\Psi \rightarrow \Psi U U = U \Psi
\alpha}->\mp@subsup{\alpha}{}{U}=U\alpha\mp@subsup{U}{}{-1
\varphi ( x ) \rightarrow U \varphi ( x ) U ^ { - 1 }
```

active transf.
$x \rightarrow x^{\prime}=L x=\Lambda x+y$
$\psi(x) \rightarrow \psi^{\prime}(x)=\psi\left(L^{-1} x\right)$
$\varphi(x) \rightarrow \varphi^{\prime}(x)=\varphi\left(\mathrm{L}^{-1} \mathrm{x}\right)$
passive transf.

By Stone thm \exists self-adjoint operators $\sigma\left(P_{\mu}\right), \sigma\left(M_{\mu \nu}\right)$ such that

$$
\begin{equation*}
U(I, y)=e^{i \sigma(P) \cdot y}, \quad U(\Lambda, 0)=e^{i \sigma\left(M_{\mu v}\right) \omega^{\mu v}} \tag{27}
\end{equation*}
$$

Free hermitean scalar field: algebra \mathscr{A} generated by a_{p}^{+}, a_{p},

$$
\begin{equation*}
\varphi(x)=\int \frac{d^{3} p}{2 p_{0}}\left[e^{-i p \cdot x} a^{p}+a_{p}^{\dagger} e^{i p \cdot x}\right] \tag{28}
\end{equation*}
$$

(with $p^{0}=\sqrt{\mathbf{p}^{2}+m^{2}}$), $\sigma(\mathscr{P}) \equiv$ "Jordan-Schwinger realization" of \mathscr{P} as operators on Fock space:

$$
\begin{align*}
& \sigma\left(P_{\mu}\right)=\int \frac{d^{3} p}{2 p_{0}} p_{\mu} a_{p}^{+} a^{p} \tag{29}\\
& \sigma\left(M_{\omega}\right)=-i \int \frac{d^{3} p}{2 p_{0}} a_{p}^{+} p_{\mu} \omega^{\mu j} \partial_{p^{j}} a^{p}=i \int \frac{d^{3} p}{2 p_{0}}\left[p_{\mu} \omega^{\mu j} \partial_{p^{j}} a_{p}^{+}\right] a^{p} . \tag{30}
\end{align*}
$$

Basic properties:

$$
\begin{equation*}
\left[\sigma\left(P_{\mu}\right), a^{p}\right]=-p_{\mu} a^{p}, \quad\left[\sigma\left(M_{\omega}\right), a^{p}\right]=i p_{\mu} \omega^{\mu j} \partial_{p^{j}} a^{p} \tag{31}
\end{equation*}
$$

and their hermitean conjugates.

Deformed: In [F.-Wess07] we found that the Ansatz

$$
\begin{equation*}
\hat{\varphi}(\hat{x})=\int \frac{d^{3} p}{2 p_{0}}\left[e^{-i p \cdot \hat{x}} \hat{a}^{p}+\hat{a}_{p}^{\dagger} e^{i p \cdot \hat{x}}\right], \tag{32}
\end{equation*}
$$

may define a free scalar field compatible with Wightman axioms and H^{\prime}-covariance in two different ways. In either case, undeformed

$$
\begin{align*}
& \left(\square+m^{2}\right) \hat{\varphi}=0 \tag{33}\\
& {\left[\hat{\varphi}(\hat{x}), \hat{\varphi}\left(\hat{x}^{\prime}\right)\right]=i F\left(\hat{x}-\hat{x}^{\prime}\right)=\int \frac{d^{3} p}{2 p_{0}(2 \pi)^{3}}\left[e^{-i p \cdot\left(\hat{x}-\hat{x}^{\prime}\right)}-e^{i p \cdot\left(\hat{x}-\hat{x}^{\prime}\right)}\right]} \tag{34}
\end{align*}
$$

The first way is by plugging $\hat{a}^{p}, \hat{a}_{p}^{\dagger}$ satisfying the commutation relations

$$
\begin{align*}
& \hat{a}_{p}^{\dagger} \hat{a}_{q}^{\dagger}=e^{i p^{t} \theta q} \hat{a}_{q}^{\dagger} \hat{a}_{p}^{\dagger}, \quad \hat{a}^{p} \hat{a}^{q}=e^{i p^{t} \theta q} \hat{a}^{q} \hat{a}^{p}, \\
& \hat{a}^{p} \hat{a}_{q}^{\dagger}=e^{-i p^{t} \theta q} \hat{a}_{q}^{\hat{a}} \hat{a}^{p}+2 \omega_{p} \delta^{3}(\mathbf{p}-\mathbf{q}), \tag{35}\\
& {\left[\hat{a}^{p}, f(\hat{x})\right]=\left[\hat{a}_{p}^{\dagger}, f(\hat{x})\right]=0,}
\end{align*}
$$

NB: (35) like (18) after $\theta \mapsto-\theta$!

The "functions" of a^{p}, a_{p}^{+}

$$
\begin{equation*}
\check{a}^{p}:=a^{p} e^{-\frac{i}{2} p^{t} \theta \sigma(P)}, \quad \quad \check{a}_{p}^{+}:=e^{\frac{i}{2} p^{t} \theta \sigma(P)} a_{p}^{+} \tag{36}
\end{equation*}
$$

fulfill (35) and $*$ structure \dagger. Together with 1, they provide a realization of generators $\hat{a}^{p}, \hat{a}_{p}^{+}, \mathbf{1}$ of $\widehat{\mathscr{A}}$ within $\mathscr{A}[[\theta]]: \mathscr{A}, \widehat{\mathscr{A}}$ isomorphic $*$-algebras. Moreover, they have the same vacuum and Fock space representation. Conversely,

$$
\begin{equation*}
\hat{\sigma}\left(P_{\mu}\right):=\int \frac{d^{3} p}{2 p_{0}} p_{\mu} \hat{a}_{p}^{+} \hat{a}^{p} \in \widehat{\mathscr{A}} \tag{37}
\end{equation*}
$$

fulfill $\left[\hat{\sigma}\left(P_{\mu}\right), \hat{a}^{p}\right]=-p_{\mu} \hat{a}^{p}$ and their hermitean conjugate; hence

$$
\begin{equation*}
\tilde{a}^{p}:=\hat{a}^{p} e^{\frac{i}{2} p^{t} \theta \hat{\sigma}(P)}, \quad \quad \tilde{a}_{p}^{+}:=e^{-\frac{i}{2} p^{t} \theta \hat{\sigma}(P)} \hat{a}_{p}^{+} \tag{38}
\end{equation*}
$$

together with $\mathbf{1}$, provide a realization of $a^{p}, a_{p}^{+}, \mathbf{1}$ of \mathscr{A} within $\widehat{\mathscr{A}}[[\theta]]$.
Corollary: replacing a^{p}, a_{p}^{+}by $\tilde{a}^{p}, \tilde{a}_{p}^{+}$in $\sigma(g)$ gives Jordan-Schwinger realization $\hat{\sigma}$ of $U \mathbf{g}$ within $\widehat{\mathscr{A}[}[\theta]]$. If $g=P_{\mu}$ one finds again (37).

Is $\widehat{\mathscr{A}}$ covariant? Under which Hopf algebra?

NB: (35) like (18) after $\theta \mapsto-\theta$! Accountable assuming $\widehat{\mathscr{A}}$ to be a right H°-comodule $(*)$-algebra, hence also a left $H^{\prime o}$-module $(*)$-algebra: $H^{\circ}=\left(V(H), m^{\circ}, *, \Delta, \varepsilon, S^{-1}\right) \equiv$ opposite Hopf $*$-algebra $H, m^{\circ}(a \otimes b)=b a$. $H^{\prime o}=\left[V\left(H^{\prime}\right), m^{\prime}, *^{\prime}, \Delta^{\prime o}, \varepsilon^{\prime}, S^{\prime-1}\right] \equiv$ co-opposite Hopf $*$-algebra, $\Delta^{\prime o}=\tau \circ \Delta^{\prime}$. $H^{\circ}, H^{\prime o}$ are dual Hopf algebra w.r.t. the same paring \langle,$\rangle as above.$ As $e_{p} \sim \hat{a}_{p}^{+}|0\rangle$, then \hat{a}_{p}^{+}, e_{p} transform in the same way, and so do \hat{a}_{p}, e_{p}^{*} :

$$
\begin{align*}
\Delta_{r}^{o}\left(\hat{a}_{p}^{+}\right) & =" e^{-i p \cdot \hat{y}} \hat{a}_{\Lambda-1 p}^{+} "=e^{-i p \cdot \hat{y}} \int d^{4} q \int \frac{d^{4} z}{(2 \pi)^{4}} e^{i(\Lambda q-p) \cdot z} \hat{a}_{q}^{+} \tag{39}\\
\Delta_{r}^{o}\left(\hat{a}_{p}\right) & =" \quad e^{i p \cdot \hat{y}} \hat{a}^{\Lambda^{-1} p} " \tag{40}
\end{align*}=e^{i p \cdot \hat{y}} \int d^{4} q \int \frac{d^{4} z}{(2 \pi)^{4}} e^{-i(\Lambda q-p) \cdot z} \hat{a}_{q}, ~ l
$$

The action \triangleright° and coaction $\Delta_{r}^{\circ}(a)=a_{(\overline{1})} \otimes a_{(2)}$ are related by

$$
g \triangleright^{\circ} a=a_{(\overline{1})}\left\langle g, a_{(2)}\right\rangle, \quad \Delta_{r}^{\circ}(a)=\mathscr{T}\left(\triangleright^{\circ} \otimes \cdot\right)(a \otimes \mathbf{1})=\left(e^{\circ} \triangleright^{\circ} a\right) \otimes \dot{e}_{l},
$$

where the canonical element $\mathscr{\mathscr { T }}=\dot{e}^{\prime} \otimes \mathrm{e}_{\text {, }}$ in $H^{\prime o} \otimes H^{\circ}$ and its inverse $\mathscr{\mathscr { T }}^{-1}=\mathscr{T}^{*^{*}(\otimes *}$ are like before. We define

$$
\begin{equation*}
\mathscr{V}:=(\hat{\sigma} \otimes i d)\left(\stackrel{\mathscr{T}}{ }_{-1}^{)}\right)=s_{K}^{H} \hat{\sigma}\left(e^{K}\right) \otimes \dot{e}_{H} \in \mathscr{A} \otimes H^{\circ} . \tag{41}
\end{equation*}
$$

It is unitary: $\mathscr{V}^{* \otimes *}=\mathscr{V}^{-1}=(\hat{\sigma} \otimes$ id $)(\mathscr{T})=\hat{\sigma}\left(e^{\prime}\right) \otimes \AA_{\rho}$.
Lemma: \mathscr{V} is unitary, and for all $\alpha \in \widehat{\mathscr{A}} \quad \mathscr{V}^{-1}(\alpha \otimes \mathbf{1}) \mathscr{V}=\Delta_{r}^{\circ}(\alpha)$.

Main result: field covariance under finite Poincaré Transformation

$$
\begin{equation*}
\Delta^{r}[\hat{\varphi}(\hat{x})] \equiv \hat{\varphi}(\Lambda \hat{x}+\hat{y})=\mathscr{U}(\Lambda, \hat{y}) \hat{\varphi}(\hat{x}) \mathscr{U}^{-1}(\Lambda, \hat{y}), \tag{42}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathscr{U}=\hat{\sigma}\left(e^{l}\right) \otimes S\left(e_{l}\right) \in \widehat{\mathscr{A} \otimes H} \tag{43}\\
& \mathscr{U}^{* \otimes *}=\mathscr{U}^{-1}=\hat{\sigma}\left(e^{I}\right) \otimes e_{I} ;
\end{align*}
$$

More explicitly, as the Lorentz Hopf subalgebra is undeformed [cf. (29)],

$$
\begin{align*}
& \mathscr{U}(\Lambda, \hat{y})=\mathscr{U}(\hat{y}) \mathscr{U}(\Lambda), \\
& \mathscr{U}(\hat{y})=e^{i \hat{\sigma}(P) \cdot \hat{y}}:=\int d^{4} q \int \frac{d^{4} z}{(2 \pi)^{4}} e^{i \hat{\sigma}(P) \cdot z+i q \cdot(z-\hat{y})}, \tag{44}\\
& \mathscr{U}(\Lambda)=e^{i \hat{\sigma}\left(M_{\mu v}\right) \omega^{\mu v}}, \quad \omega^{\mu v}(\Lambda) \text { undeformed } \\
& \hat{\sigma}\left(P_{\mu}\right)=\int \frac{d^{3} p}{2 p_{0}} p_{\mu} \hat{a}_{p}^{+} \hat{a}^{p}, \quad \text { etc., for free fields. } \tag{45}
\end{align*}
$$

(42) \& (44) is reasonable also for interacting fields, using the correct realization $\hat{\sigma}$ of \mathscr{P} on \mathscr{H}.

To describe a combination of unrelated passive, active transformation we have to introduce the Hopf $*$-algebras $\mathbb{H}:=H \otimes H^{\circ}, \mathbb{H}^{\prime}:=H^{\prime} \otimes H^{\prime o}$.
We abbreviate $a \otimes \mathbf{1} \equiv a, \mathbf{1} \otimes a \equiv a ̊, g \otimes \mathbf{1} \equiv g, \mathbf{1} \otimes g \equiv \stackrel{\circ}{g}, \mathbb{H} \equiv H H^{\circ}$, $\mathbb{H}^{\prime} \equiv H^{\prime} H^{\prime o}$, etc. The product M of \mathbb{H} and coproduct Δ of \mathbb{H}^{\prime} fulfill

$$
M(a \dot{b} \otimes c \check{d})=a c \check{d} \dot{b}, \quad \Delta\left(g \circ{ }^{\circ}\right)=g_{(1)} h_{\left(2^{\prime}\right)}^{\circ} \otimes g_{(2)} h_{\left(1^{\prime}\right)}^{\circ}
$$

$\mathbb{H}, \mathbb{H}^{\prime}$ are dual Hopf $*$-algebras w.r.t. the pairing $\langle\langle u \otimes v, a \otimes b\rangle\rangle=\langle u, a\rangle\langle v, b\rangle$
Introduce the free field tensor algebra $\hat{\Phi}^{e}:=\widehat{\mathscr{A}} \otimes \bigotimes_{i=1}^{\infty} \widehat{\mathscr{S}}^{+}$;
$f a=$ af for all $f \in \bigotimes_{i=1}^{\infty} \widehat{\mathscr{S}}, a \in \widehat{\mathscr{A}}$, by construction. $\hat{\phi}^{e}$ is a right \mathbb{H}-comodule algebra and a left \mathbb{H}^{\prime}-module algebra.

We recover the Hopf algebra of finite passive spacetime transformations by projecting the coaction on the Hopf $*$-subalgebra $H \subset \mathbb{H}$:
$\Delta_{p}^{r}: \hat{\Phi}^{e} \mapsto \hat{\Phi}^{e} \otimes H, \quad \Delta_{p}^{r}(a):=a \otimes \mathbf{1}, \quad \Delta_{p}^{r}(f):=\Delta^{r}(f)$.
We recover the Hopf algebra of finite active spacetime transformations by

$\Delta_{a}^{r}: \hat{\Phi}^{e} \mapsto \hat{\Phi}^{e} \otimes H^{\circ}, \quad \Delta_{a}^{r}(f)=f \otimes \mathbf{1}, \quad \Delta_{a}^{r}(a)=\left(e^{\circ} \triangleright^{0} a\right) \otimes e^{\circ}$,
Passive and active transformations commute with each other.

Discussion

Free field operators with arbitrary spin $\hat{\varphi}^{\alpha}$ transform according to

$$
\begin{equation*}
\hat{U}(\hat{L}) \hat{\varphi}^{\alpha}(\hat{x}) \hat{U}^{-1}(\hat{L})=S_{\beta}^{\alpha}\left(A^{-1}\right) \hat{\varphi}^{\beta}[\Lambda(A) \hat{x}+\hat{y}] . \tag{46}
\end{equation*}
$$

Denoting $\omega(A)$ a matrix such that $A=e^{i s\left(M_{\mu \nu}\right) \omega^{\mu \nu}}$, completely analogous construction of self-adjoint operators $\hat{\sigma}\left(P_{\mu}\right), \hat{\sigma}\left(M_{\mu \nu}\right)$ such that

$$
\hat{U}(A, \hat{y})=\hat{U}(\hat{y}) \hat{U}(A), \quad \hat{U}(\hat{y})=e^{i \hat{\sigma}(P) \cdot y}, \quad \hat{U}(A)=e^{i \hat{\sigma}\left(M_{\mu v}\right) \omega^{\mu v}} .
$$

One can formulate deformed covariance (42) also using the dual Hopf algebras $H^{\prime}, H^{\prime o}, \mathbb{H}^{\prime}$. H^{\prime} acts by $\triangleright, H^{\prime o}$ acts by \triangleright°, etc.
Up to our knowledge, distinguishing two different actions \triangleright, \square was considered only in [Lukierski et al 11-12] in a different but related model.
Moreover, some authors [Balachandran et al], [Piacitelli] propose a formulation of deformed covariance under finite transformations obatined by "exponentiation" of the action of infinitesimal elements $\varepsilon g \in \mathscr{P} \subset U \mathscr{P} \simeq H^{\prime}$. This was in fact used by Piacitelli to argue that true relativistic invariance of physical laws under deformed Poincaré transformations is impossible, in a way or the other broken by the choice of the deformation parameters $\theta \mu \nu$. We claim this is wrong because $U \mathscr{P} \simeq H^{\prime}$ only as algebras, not Hopf algebras.

Caveat

The action $H^{\prime} \triangleright \widehat{\mathscr{X}}$ is the deformed analog of the action $U \mathscr{P} \triangleright_{c} \mathscr{X}$. Both are algebra maps, i.e. when acting on a product the result is the product of the results. Then the infinitesimal variations $\delta_{\varepsilon g} a$ associated to the infinitesimal change of frame parametrized by $\varepsilon g \in H^{\prime}$ fulfill

$$
\begin{equation*}
a b \mapsto\left(a+\delta_{\varepsilon g} a\right)\left(b+\delta_{\varepsilon g} b\right) \simeq a b+\left(\delta_{\varepsilon g} a\right) b+a\left(\delta_{\varepsilon g} b\right), \tag{47}
\end{equation*}
$$

i.e. must be derivations, or equivalently g must be primitive. \mathscr{P} is the only subspace of $U \mathscr{P}$ spanned by primitive generators of the whole $U \mathscr{P}$

$$
\begin{equation*}
\Delta^{\prime}(g)=\mathbf{1} \otimes g+g \otimes \mathbf{1}, \quad g \in \mathscr{P} . \tag{48}
\end{equation*}
$$

We can recover the transformation associated to the finite change of frame parametrized by $g \in \mathscr{P}$ iterating infinitesimal transformations

$$
\begin{equation*}
a \mapsto e^{g} \triangleright_{c} a=\lim _{n \rightarrow \infty}(1+g / n)^{n} \triangleright_{c} a . \tag{49}
\end{equation*}
$$

If we replace $\Delta^{\prime}, \triangleright_{c} \mapsto \hat{\Delta}^{\prime}, \triangleright$ then (47-48) fail; \exists (full) analog of \mathscr{P} within H^{\prime}. Consequently, we cannot interpret $a \mapsto e^{g} \triangleright$ a, i.e. (49), as the transformation associated to a deformed finite change of frame, as done by Balachandran et al, Piacitelli.
Change of frames are to be described by the H-coaction, as said before.

The second, "exotic" way to realize the free com. rel. (19) is: Assume $P_{\mu} \triangleright_{c} \hat{a}_{p}^{\dagger}=p_{\mu} \hat{a}_{p}^{\dagger}, P_{\mu} \triangleright_{c} \hat{a}^{p}=-p_{\mu} \hat{a}^{p}$. It amounts to $\theta \mapsto-\theta$ and nontrivial commutation relations between the $\hat{a}^{p}, \hat{a}_{p}^{\dagger}$ and functions:

$$
\begin{align*}
& \hat{a}_{p}^{\dagger} \hat{a}_{q}^{\dagger}=R_{p q}^{s r} \hat{a}_{r}^{\dagger} \hat{a}_{s}^{\dagger}=e^{-i p^{t} \theta q} \hat{a}_{q}^{\dagger} \hat{a}_{p}^{\dagger}, \\
& \hat{a}^{p} \hat{a}^{q}=R_{r s}^{p q} \hat{a}^{s} \hat{a}^{r}=e^{-i p^{t} \theta q} \hat{a}^{q} \hat{a}^{p}, \\
& \hat{a}^{p} \hat{a}_{q}^{\dagger}=\delta_{q}^{p}+R_{q s}^{r p} \hat{a}_{r}^{\dagger} \hat{a}^{s}=e^{i p^{t} \theta q} \hat{a}_{q}^{\dagger} \hat{a}^{p}+2 \omega_{p} \delta^{3}(\mathbf{p}-\mathbf{q}), \tag{50}\\
& \hat{a}^{p} e^{i q \cdot x}=e^{-i p^{t} \theta q} e^{i q \cdot x} \hat{a}^{p}, \quad \hat{a}_{p}^{\dagger} e^{i q \cdot x}=e^{i p^{t} \theta q} e^{i q \cdot x} a_{p}^{\dagger} .
\end{align*}
$$

Hence $\left[\hat{\varphi}(\hat{x}), f\left(\hat{x}^{\prime}\right)\right]=0$.
It is covariant under a braided tensor product of an active copy and a passive copy of H, invariant under the diagonal active-passive transformation. So far, we can define purely active/passive trasformation appplying suitable projections, but they do not form Hopf sub-algebras (only co-ideals). Work in progress for an analog of (26').

Papers

圊 G．Fiore，J．Wess，＂Full twisted Poincare＇symmetry and quantum field theory on Moyal－Weyl spaces＇＂，Phys．Rev．D75（2007）， 105022.

國 G．Fiore，in Quantum Field Theory and Beyond，Proc．Symp．for W． Zimmermann＇s 80th birthday，64．Eds．E．Seiler，K．Sibold（World Sc．Publ．Co．，2008）．arXiv：0809．4507
－G．Fiore，＂On second quantization on noncommutative spaces with twisted symmetries＇，J．Phys．A43（2010）， 155401.

國 G．Fiore，＂Noncommutative spaces with twisted symmetries and second quantization＂，proceedings of the conference ＂Noncommutative Structures in Mathematics and Physics＂，Brussels 2008，pp．163－177．arXiv：1007．0885

國 G．Fiore，＂Twisting，＇finite＇Poincaré transformations and QFT on noncommutative space＂．Proceedings of the＂29－th International Colloquium on Group－Theoretical Methods in Physics＂（Group29）； ＂Covariance of QFT on Grönewold－Moyal－Weyl spaces under finite deformed Poincaré transformations＂，in preparation

