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Model of Causal Dynamical Triangulations

Causal Dynamical Triangulations (CDT) is a background
independent approach to quantum gravity.

The partition function of quantum gravity is defined as a
formal integral over all geometries weighted by the
Einstein-Hilbert action.

Discretization is used as regularization.
The gravitational path integral is written as a nonperturbative
sum over all causal triangulations T .

Z =

∫
D[g ]e iS

EH [g ] →
∑
T

e−S
R [T ]

S = − 1

G

∫
dt

∫
dΩ
√
g(R−6λ)→ −K0N0 + K4N4 + ∆(N14 − 6N0)
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Model of Causal Dynamical Triangulations

The Einstein-Hilbert action has a natural realization on
piecewise linear geometries called Regge action.

Causal Dynamical Triangulations assume global proper-time
foliation. Time-like links and spatial-like links are
distinguishable, and the Wick rotation is well defined.

CDT defines the class of admissible spacetime geometries
which contribute to the transition amplitude.

Monte Carlo methods allow us to calculate the expectation
values of observables.
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Model of Causal Dynamical Triangulations

Spacetime geometries contributing to the path integral are
discretized via simplicial manifolds.

A 4-dimensional configuration in CDT consists of
consecutive 3-dimensional slices connected by four-simplices.

Each slice is built from equilateral tetrahedra and forms a
3-dimensional simplicial manifold with topology S3.The
slices are numerated by integer time label t.

Manifolds of topology S3 × S1 have a causal structure.

2D 3D 4D
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Geometry of spatial slices

By construction the spatial slices - of fixed time t - have a S3

topology and are built of regular tetrahedra.

However, their geometry may significantly vary from S3

geometry.

How the geometry of constant time surface looks like?

The time foliation of spacetime is present in many other
approaches to quantum gravity. The understanding of the
geometric structure of constant time surface may be important for
further development of quantum gravity theories.
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3D spatial slices - radial volume distribution

Within one slice, the radial volume n(r) measures the number
of tetrahedra at a three-dimensional geodesic distance r from
some initial tetrahedron. (Average over configurations, slices,
initial points).
For S3 we would expect n(r) ∝ sin2(r/r0).
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3D spatial slices - Hausdorff dimension

For Hausdorff dimension dH following scaling of n(r) with the
total slice volume n3 is expected:

r → n
−1/dH
3 · r , n(r)→ n

−1+1/dH
3 · n(r)

The results are consistent with dH = 3. (2.98± 0.05)
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3D spatial slices - Hausdorff dimension

The average linear extent r̄ ≡ 1
n3

∑
r r · n(r) also scales with

dH = 3:
r̄ ∝ n

1/dH
3

Fit n
1/d
3

〈r̄〉n3

500 1000 1500 2000 2500 3000 4000

n3

10

15

20

25

30

r̄

Andrzej Görlich Geometry of the Universe in CDT



3D spatial slices - spectral dimension

The spectral dimension ds is defined by the diffusion phenomena

ds = −2
d logP(σ)

d log σ

where

σ - diffusion time

P(σ) - return probability after time σ

For S3 and short diffusion times, the spectral dimension ds = 3.

Andrzej Görlich Geometry of the Universe in CDT



3D spatial slices - spectral dimension
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3D spatial slices - spectral dimension

The measured spectral dimension dS ≈ 1.5 is significantly
smaller than the Hausdorff dimension dH ≈ 3.

The difference between dH and dS is an indication of a fractal
nature of slices (determined by foliation).

Is the character of quantum geometry fractal?

Can it be described by Gaussian fluctuations around an
average geometry?
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3D spatial slices - fractal structure

Spatial slices are built from tetrahedra and have S3 topology.

We can look for minimal necks which separate a triangulation
into almost disconnected parts. (none for smooth
triangulation)
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3D spatial slices - fractal structure

Tree of minimal necks

t t + 1
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Structure of spatial slices

The quantum geometry has a nontrivial microstructure

Spatial slices reveal a fractal nature, completely different from
smooth S3

Similarity to branched polymers

Quantum fluctuations can not be described by Gaussian
deviations from background geometry

The specified surfaces of fixed time are not physical
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Four-dimensional geometry of spacetime

So far, only the inside of three-dimensional spatial slices was
considered.

From the point of view of e.g. scalar field propagator more
important is the geometry of four-dimensional spacetime.

The foliation determines the surface of constant time and
allows introducing the spatial volume operator ni.

Spatial volume is defined as the number of tetrahedra building
a three-dimensional slice i = 1 . . .T and is the simplest
observable giving information about the geometry.
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4D de Sitter spacetime as a background geometry

The spatial volume profile ni is bell-shaped, the time
translation symmetry is spontaneously broken.
The average profile 〈ni 〉 agrees with the Euclidean de Sitter
space (S4), a classical vacuum solution.
For different total volume N4, 〈ni 〉 scales as a genuine
four-dimensional Universe.

〈ni 〉 = H cos3
(
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Minisuperspace model

The expectation value 〈v(t)〉 ∝ cos3
(
t
ω

)
corresponds to S4

and is a classical solution of maximally symmetric model,

ds2 = dt2 + v2/3(t)dΩ2
3 ⇒ S =

1

G

∫
v̇2

v
+ v

1
3 − λvdt.

The topology of spacetime dynamically transmutes from
S3 × S1 to S4.

Quantum fluctuations of v(t) are also well described by the
effective action.
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4D geometry - spectral dimension

Simulations of the diffusion process allow to compute spectral
dimension ds .
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Extrapolation of the results gives short and long range behavior

ds(σ → 0) = 1.95± 0.10, ds(σ →∞) = 4.02± 0.10,

where σ is a fictitious diffusion time.
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Radial propagation in four dimensions

In analogy to the tree of minimal necks one can analyze a tree of
connected components

No fractal structure
Shape of an elongated (in time direction) spheroid
From the shortest circumference one can estimate the
semi-minor axis of the spheroid (c.a. 4)
From the volume distribution v(t) one can estimate the
semi-major axis of the spheroid (c.a. 40)
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Two-dimensional spheroid

Curves of equidistant points from a point on a spheroid

Top view:

Regions on a four-dimensional spheroid equidistant from a
point, as well as their volume, may be obtained from the
results for a two-dimensional spheroid (inverse of elliptic
integrals)
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Two-dimensional spheroid

Curves of equidistant points from a point on a spheroid

Bottom view:

Regions on a four-dimensional spheroid equidistant from a
point, as well as their volume, may be obtained from the
results for a two-dimensional spheroid (inverse of elliptic
integrals)

Andrzej Görlich Geometry of the Universe in CDT



Radial propagation in four dimensions
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Four-dimensional geometry of spacetime

The foliation and imposition of causal structure allows to
distinguish between the length of time and spatial links.

This resulted in an elongated shape of spacetime and
decomposition of radial shells into two parts.

Fluctuations of volumes of radial shells are much smaller then
in the three-dimensional case.

4D geometry looks much smoother than 3D geometry.

Connected components tree behaves classically.
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Another definition of surfaces of constant time

Since the surfaces of fixed time are not physical, one is
motivated to change the definition of time.

As a definition of a constant time surface one can assume the
front of a wave released from the beginning of time - causal
diffusion waves.

After averaging over configurations the spherical symmetry
would be reproduced.

The topology of the wave front is preserved.

The radial propagation corresponds to propagation of light
rays.
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Causal diffusion waves
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Causal diffusion waves

With high accuracy, the front of the wave overlaps with the
original foliation.

No branching of the wave front is observed - preserved
topology (causality).

The choice of the foliation is not important.
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Conclusions

1 The model of Causal Dynamical Triangulations is manifestly
diffeomorphism-invariant (only geometric invariants) and
nonperturbative. The contribution coming from the action is
as important as the entropy of geometric configurations.

2 The three-dimensional geometry of constant time surfaces
has a fractal structure and is governed by large
fluctuations:

Hausdorff dimension dH ≈ 3
Spectral dimension dS ≈ 1.5

3 The shape of the spacetime resembles an elongated
four-dimensional spheroid:

Hausdorff dimension dH ≈ 4
Spectral dimension from dS ≈ 2 on short distances to dS ≈ 4
on long distances.

4 Quantum fluctuations of four-dimensional radial volumes are
smaller than in three-dimensional case - a smooth
four-dimensional spacetime is reconstructed.
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Thank you for your attention
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