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Motivations - Beyond classical structure of spacetime

✦ Classical spacetime described as a (pseudo-)Riemannian manifold

✦ Quantum Gravity: spacetime needs some sort of quantization             

✦ Modified (effective) spacetime probably requires also modification of 
particle dispersion relation ...

✦ ... and an appropriate deformation of Poincaré symmetries in order to 
keep relativistic properties

E2 = m2 + p2 +∆(p,m,EPl) (flat spacetime)

look for effective spacetime description (holding close to Planck 
scale) that is compatible with MDR and relativistic



✦ Algebra in bicrossproduct basis

✦ Casimir

Free (classical) particle with k-Poincaré symmetries

{P0, P1} = 0
{N,P0} = P1

{N,P1} = P0 − �P 2
0 − �

2P
2
1

C� = P 2
0 − P 2

1 − �P0P
2
1

{xµ, xν} = 0
{xµ, pν} = δνµ
{pµ, pν} = 0

one gets the representation:

P0 = p0, P1 = p1

N = x0p1 + x1

�
p0 − �p20 −

�

2
p21

�

(Poisson brackets:            limit of commutators)� → 0

(Classical phase-space: coordinates 
related to k-Minkowski ones by a 
momentum-dependent redefinition)

✦ Upon choosing the trivial symplectic structure

1+1 dimension



✦ Hamiltonian formalism (using Casimir as Hamiltonian)

Free (classical) particle with k-Poincaré symmetries

ẋ0 = {x0, C�} = 2p0 − �p21
ẋ1 = {x1, C�} = −2p1(1 + �p0)

ṗµ = {pµ, C�} = 0

Worldline:

x1 − x̄1 = −
�
p20 −m2

p0

�
1 + �

2p20 −m2

2p0

�
(x0 − x̄0)

✦ Covariance under the action of symmetry generators:
(x1)� = v(p�0) · (x0)� ⇔ x1 = v(p0) · x0

f(x, p)� � f(x, p) + ξ{N, f(x, p)}

{N, x1} = v(p0){N, x0}+ ∂v(p0)

∂p0
{N, p0}x0 ⇔ x1 = v(p0)x

0

Rosati, Loret, Amelino-Camelia JPCS 2013
Amelino-Camelia, Barcaroli, GG, Loret CQG 2013

Amelino-Camelia, Matassa, Mercati, Rosati PRL 2010 

1+1 dimension



✦ By now it is quite well understood that modified symmetries are related 
to non-trivial properties of the momentum space geometry (curvature, 
torsion...) - see earlier talk by GAC

Geometrical interpretations

✦ for the corresponding description of spacetime there are several 
alternatives (noncommutative geometry, rainbow spacetime...) which 
are not easily generalized when there is curvature on both sides of 
phase space (noncommutative geom.) or rely on heuristic arguments 
(rainbow)

momentum space of particles with k-Poincaré symmetries is (a portion of) de Sitter 
manifold

bicrossproduct basis corresponds to momentum space coordinates with metric:

ζµν(p) =

�
1 0
0 −(1 + 2�p0)

�

Kowalski-Glikman PLB 2002
Kowalski-Glikman, Nowak, CQG 2003 

GG, Mercati, CQG 2013
Amelino-Camelia, Arzano, Kowalski-
Glikman, Rosati, Trevisan  CQG 2012

Born PRSLA 1938
Snyder PR 1947
(......)
Amelino-Camelia, Freidel, Kowalski-Glikman, 
Smolin PRD 2011, IJMPD 2011



Finsler geometry

✦ Introduces a velocity-dependent generalization of Riemannian metric

gµν(x, ẋ) ≡
1

2

∂F 2

∂ẋµ∂ẋν

F (x, ẋ) =
�

gµν ẋµẋν

spacetime point
   tangent vector ẋ ∈ TxM

x ∈ M

F (x, ẋ) �= 0 if ẋ �= 0

F (x,λẋ) = |λ|F (x, ẋ), λ ∈ R

✦ Looks like a natural consistent framework to describe velocity/
momentum dependent metric

is this a good framework to describe a relativistic theory with deformed 
symmetries?

defined starting from a norm                                          over the 
tangent bundle instead than from an inner product

F satisfies usual norm properties:

for reviews : Rund 1959
                    Bao, Chern, Shen 2000



so that the action is the straightforward generalization of the standard 
action for relativistic free particle

Girelli, Liberati, Sindoni PRD 2007

Finsler geometry of a particle with modified dispersion relation

I = m

�
F (x, ẋ)dτ

✦ Start from the Lagrangian of a free relativistic particle with mass-shell 
condition m2 = M(p)

I =

� �
ẋµpµ − λ

�
M(p)−m2

��
dτ

✦ Make use of Hamilton equations to find relation between velocities 
and momenta, invert and substitute                                                   
then solve for the Lagrange multiplier

pµ → pµ(ẋ,λ)

I =

�
L (ẋ,λ(ẋ)) dτ

✦ The Lagrangian can be interpreted as a Finsler norm:

Istd = m

� �
gµν(x)ẋµẋνdτ



✦ Apply procedure just described to the case 

Finsler geometry of a particle with k-Poincaré symmetries

m2 = C�(p)

I =

� �
ẋµpµ − λ

�
p20 − p21 − �p0p

2
1 −m2

��
dτ

✦ From Hamilton equations + minimization w.r.t Lagrange multiplier

✦ The Lagrangian as a function of velocities only is then

I = m

� ��
(ẋ0)2 − (ẋ1)2 +m

�

2

ẋ0(ẋ1)2

(ẋ0)2 − (ẋ1)2

�
dτ

p0 = m ẋ0√
(ẋ0)2−(ẋ1)2

− �
2m

2 (ẋ1)2((ẋ0)
2+(ẋ1)

2)
((ẋ0)2−(ẋ1)2)2

p1 = −m ẋ1√
(ẋ0)2−(ẋ1)2

+ �
2m

2 ẋ1(ẋ0)
3

((ẋ0)2−(ẋ1)2)2

F (ẋ) =
�
(ẋ0)2 − (ẋ1)2 +m

�

2

ẋ0(ẋ1)2

(ẋ0)2 − (ẋ1)2

(flat spacetime - the norm is independent on coordinates)



✦ Velocity-dependent spacetime metric                           :

Finsler spacetime metric

in terms of momenta:

gµν(p) =

�
1 + 3

2�
p0p

4
1

m4
�
2
4p2

0p
3
1−p5

1
m4

�
2
4p2

0p
3
1−p5

1
m4 −1 + �

2p
3
0
2p2

0+p2
1

m4

�

gµν(ẋ) =



1 + 3
2�m

ẋ0(ẋ1)4

((ẋ0)2−(ẋ1)2)5/2
�m2

−4(ẋ0)2(ẋ1)3+(ẋ1)5

((ẋ0)2−(ẋ1)2)5/2

�m2
−4(ẋ0)2(ẋ1)3+(ẋ1)5

((ẋ0)2−(ẋ1)2)5/2
−1 + 1

2�m(ẋ0)3 2(ẋ0)2+(ẋ1)2

((ẋ0)2−(ẋ1)2)5/2





✦ The inverse of this metric is found to have a simple relation with the 
particle dispersion relation:

gµν(p)pµpν = p20 − p21 − �p0p
2
1 = C�

gµν =
1

2

∂F 2

∂ẋµ∂ẋν

✦ In terms of this metric momenta are simply related to velocities:

pµ = m
gµν ẋν

�
gαβ ẋαẋβ



✦ The geodesic equation in Finsler geometry reads:

Worldlines and symmetries

with generalized Christoffel symbols 

✦ Applied to our “k-Poincaré” case: 

(with affine parameterization F=1)ẍµ + Γµ
νρ(x, ẋ)ẋ

ν ẋρ = 0

Γµ
νρ(x, ẋ) =

1

2
gµσ(x, ẋ) [−∂σgνρ(x, ẋ) + ∂νgρσ(x, ẋ) + ∂ρgσν(x, ẋ)]

Γµ
νρ(x, ẋ) = 0 (flat geometry)

ẍµ = 0

(using affine parameterization)

x1 − x̄1 =

��
(ẋ0)2 − 1(1 + �

2mẋ0)

ẋ0

�
(x0 − x̄0)

when going to momenta this is same as the one derived earlier



✦ Finsler geometry also gives a prescription for finding symmetries of the 
metric by use of a generalized Killing equation:

Worldlines and symmetries

✦ At zero order in l one recovers standard Killing vectors: 

gµρ ∂νξ
ρ + gνρ ∂µξ

ρ +
∂gµν
∂ẋρ

∂ξρ

∂xσ
ẋσ +

∂gµν
∂xρ

ξρ = 0

ξµ(0) =

�
a x1 + d0

a x0 + d1

�

while the first-order correction for our case is

ξµ(1) =

�
A0 + d0mF[1](ẋ) + Cx1 + am(F[2](ẋ)x

0 + F[3](ẋ)x
1)

A1 + d1mF[4](ẋ) + Cx0 + am(F[5](ẋ)x
0 + F[6](ẋ)x

1)

�

F[i](ẋ) are defined functions of velocities - e.g.                            

A0, A1, C are free parameters that can be arbitrary functions of velocities

Rund 1959

F[1](ẋ) =
(ẋ1)2((ẋ0)2 + (ẋ1)2)

2ẋ0((ẋ0)2 − (ẋ1)2)3/2



✦ To compare with k-Poincaré symmetries look at conserved charges

Worldlines and symmetries

and compare with representation of k-Poincaré generators

QF ≡ ξµ pµ(ẋ)

Q(0)
F = d0p0 + d1p1 + ax0p1 + ax1p0

Q(1)
F = A0p0 +A1p1 + C(p0x1 + p1x0)+

a(2p3
0p1x

0+p2
1x

1(p2
0+p2

1))
2m2 +

d0p2
1(p2

0+p2
1)

2m2 + d1p3
0p1

m2

✦ Asking that the charges reproduce the representation of k-Poincaré 
generators constraints the three free functions

A1 = −d1 m
(ẋ0)3

((ẋ0)2 − (ẋ1)2)3/2
+ d0 m

ẋ1((ẋ0)2 + (ẋ1)2)

((ẋ0)2 − (ẋ1)2)3/2
+A0 ẋ

0

ẋ1

C = −am
(ẋ0)3

((ẋ0)2 − (ẋ1)2)3/2



✦ Killing eqs results are consistent with the symmetries of k-Poincaré - in 
bicrossproduct basis

✦ Freedom provided by other choices of free functions in Finsler 
conserved charges is linked to the freedom of redefining the k-P boost 
generator (s.t. the Casimir is unchanged)

✦ On the other hand, changing basis in k-P, so that the form of the 
Casimir is modified, amounts to changing the corresponding spacetime 
Finsler geometry (different metric with different conserved charges)

More on freedom in definition of symmetry generators

NCκ−compatible = p1x
0 + p0x

1 + �

�
Ap0 +Bp1 + αp0p1x

0 + γ(p0p1x
1 + p21x

0) + (α− 1)p20x
1 − 1

2
p21x

1

�

p0 → p0

p1 → p1

�
1 +

�

2
(p1 − p0)

� C(new)
� = p20 − p21 − �p31

g(new)
µν =
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5
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3
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5
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5
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✦ Finsler generalization of Riemannian geometry can be used to describe spacetime 
geometry seen by a particle with given (modified) dispersion relation

✦ When the dispersion relation is modified, the resulting Finsler metric is velocity 
dependent, but flat is the dispersion relation is a deformation of the special-
relativistic one

✦ Proposal for a ‘rainbow’ metric associated to classical particles with k-Poincaré-
inspired symmetries

✦ This provides a consistent framework to derive physical properties of the particle: 
propagation, symmetries

✦ can it be used to treat more complicated cases, when gravity is introduced?

✦ how to introduce interactions?

Summary and outlook


