On Relation Between Deformed Heisenberg Algebra And Finite Dimensional Lie Algebras

Anatol Nowicki

Plan:

- Motivation
- Three dimensional Lie algebras for positive and even deformation function
- Four dimesional Lie algebra (extended Heisenberg algebra) for positive deformation function
- Final remarks

Motivation

Let us recall some examples of deformed algebras:
(1) two dimensional deformed space-time algebra

- (Majid, Ruegg)

$$
\left[x_{0}, x\right]=i \lambda x, \quad \lambda \text { real deformation parameter }
$$

(2) "Planck scale"quantum algebra (Majid)

$$
[x, p]=i\left(1-e^{-\lambda x}\right), \quad(\hbar=c=1)
$$

(3) deformed Heisenberg algebra with minimal length - (Kempf)

$$
[x, p]=i\left(1+\lambda^{2} p^{2}\right)
$$

(4) deformed two dimensional Borel algebras related with Jordanian twist (Ogievetsky)

$$
[x, p]=\lambda p(p-1), \quad[\sigma, x]=\lambda\left(1-e^{\sigma}\right)
$$

where $\sigma=\ln p$.
comments:
(i) in example (1) we deal with two-dimensional Lie algebra $\mathfrak{a f f}(\mathcal{R})$ of the group of all affine transformations of the real line
(ii) other examples are related to infinitedimensional Lie algebras
remark: In all presented two dimensional cases we deal with two variables x, p, a function $f(p)$ and commutation relations in the form

$$
[x, p]=i f(p)
$$

Linearization of deformed algebra:
We assume that

- x, p and $f(p)$ can be represented as hermitean operators $\mathbf{X}, \mathbf{P}, \mathbf{F}$ in appropriate Hilbert space
- in "momentum" representation we have the following realizations

$$
\mathbf{P}=p, \quad \mathbf{F}=f(p), \quad \mathbf{X}=i f(p) \frac{d}{d p}
$$

acting on square integrable functions $\phi(p) \in \mathcal{L}^{2}(-a, a ; f)$ ($a \leq \infty$) with the scalar product

$$
\langle\psi, \phi\rangle=\int_{-a}^{a} \frac{d p}{f(p)} \psi^{*}(p) \phi(p)
$$

remarks:

- because of positive definite scalar product we have

$$
|\phi|^{2}>0 \Longrightarrow f(p)>0
$$

- the hermiticity of X implies

$$
\phi(-a)=\phi(a) \quad \text { or } \quad \phi(-a)=-\phi(a)
$$

Commutation relations

$$
\begin{aligned}
{[\mathbf{X}, \mathbf{P}] } & =i \mathbf{F}, & & {[\mathbf{P}, \mathbf{F}]=0 } \\
{[\mathbf{X}, \mathbf{F}] } & =i f(p) f^{\prime}(p)=i \mathbf{F}_{1}, & & {\left[\mathbf{P}, \mathbf{F}_{1}\right]=0 }
\end{aligned}
$$

In order to get a finite low-dimensional Lie algebra we require that algebra of three operators \mathbf{X}, \mathbf{P} and \mathbf{F} is linear and to close this algebra we put
$[\mathbf{X}, \mathbf{F}]=i f f^{\prime}=i(\alpha+\beta p+\gamma f)=i(\alpha+\beta \mathbf{P}+\gamma \mathbf{F})$
where α, β and γ are real parameters.

Three dimensional Lie algebras

We consider the case of deformation function $f(p)$ is positive and even function i.e. $f(-p)=f(p)$ then

$$
f(p) f^{\prime}(p)=\beta p
$$

and positive function of deformation

$$
f(p)=\sqrt{1+\beta p^{2}}
$$

Lie algebra generated by $\mathbf{X}, \mathbf{P}, \mathbf{F}$ satisfy the relations

$$
[\mathbf{X}, \mathbf{P}]=i \mathbf{F}, \quad[\mathbf{X}, \mathbf{F}]=i \beta \mathbf{P}, \quad[\mathbf{P}, \mathbf{F}]=0
$$

with second order Casimir operator

$$
C_{2}=\mathbf{P}^{2}-\frac{1}{\beta} \mathbf{F}^{2}
$$

Let us redefine the generators ($\beta= \pm \lambda^{2}$)

$$
\mathbf{A}_{3}=\frac{1}{\lambda} \mathbf{X}, \quad \mathbf{P}_{ \pm}=\mathbf{F} \pm \lambda \mathbf{P}=\mathbf{A}_{2} \pm \mathbf{A}_{1}
$$

commutation relations

$$
\begin{aligned}
& {\left[\mathbf{A}_{3}, \mathbf{P}_{+}\right]=i \operatorname{sign}(\beta)\left(\mathbf{A}_{1}+\operatorname{sign}(\beta) \mathbf{A}_{2}\right)} \\
& {\left[\mathbf{A}_{3}, \mathbf{P}_{-}\right]=i \operatorname{sign}(\beta)\left(\mathbf{A}_{1}-\operatorname{sign}(\beta) \mathbf{A}_{2}\right)}
\end{aligned}
$$

In this basis the Casimir operator take the form
$C_{2}(\beta)=\mathbf{P}^{2}-\frac{1}{\beta} \mathbf{F}^{2}=\left\{\begin{array}{l}C_{2}\left(\lambda^{2}\right) \equiv \frac{1}{\lambda^{2}} \mathbf{P}_{+} \mathbf{P}_{-} ; \quad \beta=\lambda^{2}>0, \\ C_{2}\left(-\lambda^{2}\right) \equiv \frac{1}{2 \lambda^{2}}\left(\mathbf{P}_{+}^{2}+\mathbf{P}_{-}^{2}\right) ; \beta=-\lambda^{2}<0 .\end{array}\right.$

Depending on sign of the deformation parameter β we get two types of three-dimensional Lie algebras:
(a) the case $\beta>0$ the algebra of inhomogeneous hyperbolic rotations of two-dimensional plane $\mathfrak{i s o}(1,1)$ satisfying relations
$\left[\mathbf{A}_{3}, \mathbf{P}_{+}\right]=i \mathbf{P}_{+}$,

$$
\left[\mathbf{A}_{3}, \mathbf{P}_{-}\right]=-i \mathbf{P}_{-},
$$

$$
\left[\mathbf{P}_{+}, \mathbf{P}_{-}\right]=0
$$ explicit realization of generators in "momentum representation"

$$
\mathbf{A}_{3}=\frac{i}{\lambda} \sqrt{1+\beta p^{2}} \frac{d}{d p}, \quad \mathbf{P}_{ \pm}=\sqrt{1+\lambda^{2} p^{2}} \pm \lambda p=e^{ \pm \operatorname{arcsh}(\lambda \mathbf{P})}
$$ acting on the square integrable functions $\phi \in \mathcal{L}^{2}(\mathfrak{\Re})$ with the scalar product

$$
\langle\psi, \phi\rangle=\int_{-\infty}^{\infty} \frac{d p}{\sqrt{1+\lambda^{2} p^{2}}} \psi^{*}(p) \phi(p)
$$

(b) the case $\beta<0$ the algebra of inhomogeneous rotations of two-dimensional Euclidean plane iso(2) satisfying relations

$$
\left[\mathbf{A}_{3}, \mathbf{P}_{+}\right]=i \mathbf{P}_{-}, \quad\left[\mathbf{A}_{3}, \mathbf{P}_{-}\right]=-i \mathbf{P}_{+}, \quad\left[\mathbf{P}_{+}, \mathbf{P}_{-}\right]=0
$$ explicit realization of generators

$$
\mathbf{A}_{3}=\frac{i}{\lambda} \sqrt{1-\beta p^{2}} \frac{d}{d p}, \quad \mathbf{P}_{ \pm}=\sqrt{1-\lambda^{2} p^{2}} \pm \lambda p=e^{ \pm \operatorname{arcsh}(\lambda \mathbf{P})}
$$

Hermicity condition of generators implies that $-1 \leq \lambda p \leq 1$ and they acting on the square integrable functions $\phi \in \mathcal{L}^{2}(-1 / \lambda, 1 / \lambda)$ with the scalar product

$$
\langle\psi, \phi\rangle=\int_{-1 / \lambda}^{1 / \lambda} \frac{d p}{\sqrt{1-\lambda^{2} p^{2}}} \psi^{*}(p) \phi(p)
$$

Four dimensional Lie algebra

We assume that deformation function $f(p)=1+w(p)$ is positive then

$$
f(p) f^{\prime}(p)=(1+w(p)) w^{\prime}(p)=w(p)
$$

and positive function of deformation is given by

$$
f(p)=1+W\left(e^{p+a}\right)=1+w(p)
$$

with arbitrary real constant $a \in \mathcal{R}$ and function $W(z)$ is the Lambert function. The function $W(z)$ is positive and increasing function (concave) on positive semi-axis $z \in \mathcal{R}_{+}$.

Lie algebra is generated by

$$
\mathbf{P}=p, \quad \mathbf{F}=w(p), \quad \mathbf{X}=i(1+w(p)) \frac{d}{d p}
$$

and satisfy the commutation relations

$$
[\mathbf{X}, \mathbf{P}]=i(\mathbf{I}+\mathbf{F}), \quad[\mathbf{X}, \mathbf{F}]=i \mathbf{F}, \quad[\mathbf{P}, \mathbf{F}]=0
$$

equivalently, introducing generator $\boldsymbol{\Pi}=\mathbf{P}-\mathbf{F}$

$$
[\mathbf{X}, \boldsymbol{\Pi}]=i \mathbf{I}, \quad[\mathbf{X}, \mathbf{F}]=i \mathbf{F}, \quad[\boldsymbol{\Pi}, \mathbf{F}]=0
$$

remarks:
(i) operators $\mathbf{X}, \boldsymbol{\Pi}$ generate three dimensional Heisenberg algebra $(\mathbf{X}, \boldsymbol{\Pi}, Z=\mathbf{I})$
(ii) operators \mathbf{X}, \mathbf{F} generate two-dimensional algebra $\mathfrak{a f f}(\mathcal{R})$
some comments on the Lambert function $W(z)$:

The Lambert function $W(z)$ is one-to-one on positive real axis $0 \leq z<\infty$ and the inverse function of $z \rightarrow z e^{z}$ i.e.

$$
W\left(z e^{z}\right)=z
$$

and the following relations hold

$$
\begin{gathered}
W(z) e^{W(z)}=z, \quad W^{\prime}(z) \equiv \frac{d W}{d z}=\frac{e^{-W(z)}}{1+W(z)} \\
W^{\prime \prime}(z)=-\left(W^{\prime}(z)\right)^{2}\left(\frac{2+W(z)}{1+W(z)}\right)
\end{gathered}
$$

The last relation tell us that because the function $W(z)$ is nonnegative on the positive real line, therefore $W^{\prime \prime}(z)<0$ and $W(z), z \in \mathcal{R}_{+}$is concave.
The first two formulae imply that

$$
z(1+W(z)) \frac{d W(z)}{d z}=W(z)
$$

Assuming that $z=e^{p+a}, a \in \mathcal{R}$ and $w(p)=W\left(e^{p+a}\right)$ we get

$$
(1+w(p)) \frac{d w(p)}{d p}=w(p)
$$

explicit differential realization of generators
$\mathbf{P}=p, \quad \mathbf{F}=W\left(e^{p+a}\right), \quad \mathbf{X}=i\left(1+W\left(e^{p+a}\right)\right) \frac{d}{d p}$
acting on the square integrable functions $\phi \in \mathcal{L}^{2}(\mathcal{R})$ with the scalar product

$$
\langle\psi, \phi\rangle=\int_{-\infty}^{\infty} \frac{d p}{1+W\left(e^{p+a}\right)} \psi^{*}(p) \phi(p)
$$

or changing the variables $p \rightarrow \xi$

$$
\xi=p-W\left(e^{p+a}\right), \quad p=\xi+e^{\xi}
$$

we get an equivalent differential realization of generators

$$
\mathbf{X}=i \frac{d}{d \xi}, \quad \mathbf{P}=\xi+e^{\xi}, \quad \mathbf{F}=1+e^{\xi}
$$

explicit matrix realization of generators
Four dimensional algebra $\mathfrak{H}^{e x t}$ (extended Heisenberg algebra) generated by X, Π, Z, F with non-vanishing commutation relations

$$
[\mathbf{X}, \mathbf{\Pi}]=\mathbf{Z}, \quad[\mathbf{X}, \mathbf{F}]=\mathbf{F}
$$

can be realized by 5×5 non-hermitian matrices
$V(x, y, z, v)=x X+\pi \Pi+z Z+\varphi F=\left[\begin{array}{ccccc}0 & x & z & 0 & 0 \\ 0 & 0 & \pi & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & \varphi \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
where $x, \pi, z, \varphi \in \mathcal{R}$ and
$\left[V(x, \pi, z, \varphi), V\left(x^{\prime}, \pi^{\prime}, z^{\prime}, \varphi^{\prime}\right)\right]=\left(x \pi^{\prime}-x^{\prime} \pi\right) Z+\left(x \varphi^{\prime}-x^{\prime} \varphi\right) F$
conclusion: algebra $\mathfrak{H}^{e x t}$ is solvable.

Final remarks

We conclude that by linearization of deformation function we get the following

low dimensional Lie algebras

$$
\begin{array}{ccc}
2-\text { dimensional } & 3-\text { dimensional } & 4 \text {-dimensional } \\
{[X, P]=P} & {[X, P]=F} & {[X, \Pi]=Z} \\
f(p)=p & f(p)=\sqrt{1+\beta p^{2}} & f(p)=1+W\left(e^{p+a}\right) \\
& {[X, F]=F} \\
\mathfrak{a f f}(\mathcal{R}) \sim B(2) & \mathfrak{i s o}(2) \sim \mathfrak{s o}(2) \boxplus \mathfrak{t}^{2} & \\
& \mathfrak{i s o}(1,1) \sim \mathfrak{s o}(1,1) \boxplus \mathfrak{t}^{2} & \mathfrak{H}^{\text {ext }}
\end{array}
$$

where $B(2)$ is two dimensional Borel Lie algebra.

Partially based on the article:
A.N. and V.M. Tkachuk, J. Phys. A 47 (2014) 025207

