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Why 3d?

Riemann-tensor
D2(D2

−1)
12 components in D dimensions:

◮ 4D: 20 (10 Weyl and 10 Ricci)

◮ 3D: 6 (Ricci)



Why 3d?

Einstein equations (without cosmological constant)

Rab −
1

2
Rgab = −8πGTab

has a flat solution for Tab = 0.
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◮ No gravitational waves in the classical theory

◮ No gravitons in the quantum theory
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Why 3d?

◮ Rabcd = 0 =⇒ any point in the spacetime M has a

neighborhood Ui that is isometric to Minkowski space

(V 2,1, η)

◮ Ui can be extended globally and the geometry is trivial

◮ But if M contains non-contractible curves, this extension is

nontrivial
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Why 3d?

Thus 3d gravity is relatively simple

Testing ground for the role of NCG in quantum gravity
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Switching on the cosmological constant Λ
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Isometry groups of 3d gravity

Isometry groups of the local model spacetimes play a

fundamental role in 3d gravity:

◮ Construction of globally non-trivial solutions of the Einstein

equations on a general 3-manifold;

◮ In the Chern-Simons formulation of 3d gravity, they play

the role of gauge groups.



Isometry groups of 3d gravity at a glance

Λ Euclidean sig.(c2 < 0) Lorentzian sig.(c2 > 0)

Λ = 0 ISO(3) = SU(2)⊲<R
3 ISO(2, 1) = SU(1, 1)⊲<R

3

Λ > 0 SO(4) ∼=
(SU(2)×SU(2))

Z2
SO(3, 1) ∼= SL(2,C)/Z2

Λ < 0 SO(3, 1) ∼=
SL(2,C)

Z2
SO(2, 2) ∼=

(SL(2,R)×SL(2,R))

Z2



Lie algebras local isometry groups

The Lie algebras, denoted by gλ, are the six-dimensional Lie

algebra with generators Ja and Pa, a = 0, 1, 2 with Lie brackets

[Ja, Ja] = εabcJc , [Ja,Pb] = εabcPc [Pa,Pb] = λεabcJc .

where

λ = −c2
Λ.
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Generalised Chern-Simons action for 3d gravity

A CS theory on a 3d manifold requires:

◮ a gauge group

◮ Ad-invariant, non-degenerate, symmetric bilinear form on

the Lie algebra of the gauge group
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Generalised Chern-Simons action for 3d gravity

Consider a 3d spacetime manifold M of topology R× S.

The gauge field is locally a 1-form A ∈ gλ

A = ωaJa + eaPa,

where

◮ ω = ω
aJa is the spin connection on the frame bundle

◮ the 1-form ea is a dreibein (provided it is invertible).



Generalised Chern-Simons action for 3d gravity

The curvature of this connection is given by

F = dA +
1

2
[A ∧ A] = R + C + T ,

which contains

◮ the Riemann curvature

R = dω +
1

2
[ω ∧ ω]

◮ a cosmological term

C =
λ

2
ǫ
abcea ∧ ebJc

◮ the torsion

T = (dec + ǫ
abc

ωa ∧ eb)Pc .
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Generalised Chern-Simons action for 3d gravity

The CS action for A is then defined by

Iαβ(A) =

∫

M

(A ∧ dA)αβ +
1

3
(A ∧ [A,A])αβ

where

(Ja, Jb)αβ = βηab, (Ja,Pb)αβ = αηab, (Pa,Pb)αβ = λβηab.

(E. Witten, C. Meusburger, B. J Schroers )



Generalised Chern-Simons action for 3d gravity

After integrating by parts and dropping the boundary term, the

action becomes

Iτ (A) = α

∫

M

(

2ea
∧ Ra +

λ

3
ǫabcea

∧ eb
∧ ec

)

+β

∫

M

(

ωa
∧ dωa +

1

3
ǫabcω

a
∧ ωb

∧ ωc + λea
∧ Ta

)

,



Generalised Chern-Simons action for 3d gravity

We identify

α =
1

16πG
, β = Immirzi parameter

to see the explicit dependence of the CS action on Λ, c, G and

the Immirzi parameter.
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Classical r−matrices

For any Lie algebra g,

◮ let

r = rabXa ⊗ Yb ∈ g⊗ g

◮ Set

r12 = rabXa ⊗ Yb ⊗ 1

r13 = rabXa ⊗ 1⊗ Yb

r23 = rab1⊗Xa ⊗ Yb

in g⊗ g⊗ g.
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Classical r−matrices

We define the classical Yang-Baxter map by

CYB : g⊗2
→ g⊗3, r !→ [[r , r ]] = [r12,r13] + [r12,r23] + [r13,r23].

The equation

[[r , r ]] = 0

is called the classical Yang-Baxter equation(CYBE).



Classical r−matrices

◮ Any solution of the CYBE in g⊗ g is called a classical

r−matrix.

◮ If

[[r , r ]] != 0

but an invariant element of g⊗ g⊗ g then r is said to satisfy

the modified classical Yang-Baxter equation(MCYBE).



Relating Chern-Simons action and Hopf algebras

◮ Classical r−matrices provide bridge between a

Chern-Simons theory and Hopf algebras.
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Relating Chern-Simons action and Hopf algebras

MAIN THEOREM:

A classical r−matrix is said to be compatible with a CS action if:

◮ it satisfies the CYBE

◮ its symmetric part is equal to the Casimir associated to the

Ad−invariant, non-degenerate, symmetric bilinear form

used in the CS action.

(V. V. Fock, A. A Rosly )



Relating Chern-Simons action and Hopf algebras

The Casimir associated (· , ·)αβ

Kαβ =
1

α2 − λβ2
(α(Pa ⊗ Ja + Ja

⊗Pa)− β(Pa ⊗Pa + λJa ⊗ Ja).



Quantum picture

◮ Poisson brackets of the extended phase space is given in

terms the classical r−matrix.

◮ The quantisation of such classical systems implies

quantum systems whose symmetries are given by Hopf

algebras.



Quantum picture

Resulting quantum picture:



Quantum picture

Resulting quantum picture:

◮ a deformation of the model spacetimes into

non-commutative spaces

◮ a replacement of the local isometry groups with ’quantum

isometry groups’ (QIGs)



Quantum isometry groups in 3d quantum gravity

Λ Euclidean (c2 < 0) Lorentzian (c2 > 0)

Λ = 0 D (U(su(2))) D (U(su(1, 1)))

Λ > 0 D (Uq(su(2))), q root of unity D (Uq(su(1, 1))) q ∈ R

Λ < 0 D (Uq(su(2))), q ∈ R D (Uq(sl(2,R))), q ∈ U(1)

q = e−

�G
√

Λ

c ,



Relating Chern-Simons action and Hopf algebras

Uniqueness of associated r−matrices ???
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( B. Schroers , S Majid, C Meusburger)



Relating Chern-Simons action and Hopf algebras

Associated quantum groups include a family of

◮ bicrossproduct quantum groups

◮ quantum doubles.

( B. Schroers , S Majid, C Meusburger)

◮ ????????
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Most general r−matrix for the general CS action

The trick of generalised complexification

r = (id⊗ A + θ ⊗ B − B ⊗ θ + θ ⊗ θ C)Ja
⊗ Ja

= Ja
⊗ A(Ja) + Pa

⊗ B(Ja)− B(Ja)⊗ Pa + Pa
⊗ C(Pa)

= AbaJa
⊗ Jb + BbaPa

⊗ Jb
− BbaJb

⊗ Pa + CbaPa
⊗ Pb,

where

Pa = θJa, θ
2 = −λ

and

Aab = −Aba Cab = −Cba.



Most general r−matrix for the general CS action

We are trying to solve

[[r , r ]] = Ω

where Ω is the most general invariant element in (gλ)
3; in terms

of real parameters α̃, β̃:

Ω = α̃ǫabc(λJa
⊗ Jb

⊗ Jc + Ja
⊗ Pb

⊗ Pc

+ Pa
⊗ Jb

⊗ Pc + Pa
⊗ Pb

⊗ Jc)

+ β̃ǫabc(P
a
⊗ Pb

⊗ Pc + λPa
⊗ Jb

⊗ Jc

+ λJa
⊗ Jb

⊗ Pc + λJa
⊗ Pb

⊗ Jc).



Most general r−matrix for the general CS action

Or

Ω = (α̃(λ+ id⊗ θ ⊗ θ + θ ⊗ id⊗ θ + θ ⊗ θ ⊗ id)

+ β̃(θ ⊗ θ ⊗ θ + λθ ⊗ id⊗ id

+ λid⊗ id⊗ θ + λid⊗ θ ⊗ id))ǫabcJa
⊗ Jb

⊗ Jc .



Conditions on possible solutions

1

2
(A2) +

λ

2

(

(B)2
− (B2)

)

= −α̃λ,

(CB) = −β̃,

(B − (B))(B + Bt) +
1

2

(

(B)2
− (B2)

)

id− CA

+λ(C2
−

1

2
(C2)id) = α̃ id,

−A(B + Bt)− (Bt
− (B))A− (AB)id

+λ(BtC − (B)C) = λβ̃ id
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Semiduality and compatible r−matrices

◮ A given classical action may have several QIGs associated

to it

◮ a given QIG may arise for more than one action.

◮ Moreover, pairs of QIGs may be related by semiduality.



Semiduality and compatible r−matrices
Given

Kα = 16πG(Ja⊗Pa + Pa⊗ Ja)



Semiduality and compatible r−matrices
Given

Kα = 16πG(Ja⊗Pa + Pa⊗ Ja)

Cos Sig r QIG Semidual of

const QIG

λ = −c2
Λ

λ = 0 E rD0
U(so(4)) D (U(su(2)))

λ = 0 L rD0
D(U(sl(2,R)))

rB0
U(so(2, 2)) C[AN(2)]◮⊳sU(sl(2,R))

ras
D0

=
1

2
(Pa ⊗ Ja

− Ja
⊗Pa)

ras
B0

=
1

2
ǫabcma(Pb

⊗ Jc + Jb
⊗ Pc), m

2 = −1
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Conclusion

◮ Semidualisation provides a way of classifying quantisation

ambiguities in 3d gravity



THANK YOU!!!


