Semiduality and compatible r-matrices for 3d gravity

Prince K. Osei
AIMS-Ghana, Biriwa

$33^{\text {rd }}$ Max Born Symposium, Wroclaw
July, 2014
based on work with B. J. Schroers

Outline

Why 3d gravity?
Isometry groups of 3d gravityGeneralised Chern-Simons action for 3d gravityRelating Chern-Simons action and Hopf algebras
Most general r-matrix for the general CS action
Semiduality and compatible r-matrices
Conclusion

Why 3d?

Riemann-tensor $\frac{D^{2}\left(D^{2}-1\right)}{12}$ components in D dimensions:

Why 3d?

Riemann-tensor $\frac{D^{2}\left(D^{2}-1\right)}{12}$ components in D dimensions:

- 4D: 20 (10 Weyl and 10 Ricci)

Riemann-tensor $\frac{D^{2}\left(D^{2}-1\right)}{12}$ components in D dimensions:

- 4D: 20 (10 Weyl and 10 Ricci)
- 3D: 6 (Ricci)

Why 3d?

Einstein equations (without cosmological constant)

$$
R_{a b}-\frac{1}{2} R g_{a b}=-8 \pi G T_{a b}
$$

has a flat solution for $T_{a b}=0$.

Why 3d?

Physically $3 d$ spacetime has no local degrees of freedom:

Why 3d?

Physically 3d spacetime has no local degrees of freedom:

- No gravitational waves in the classical theory
- No gravitons in the quantum theory

Why 3d?

- $R_{\text {abcd }}=0 \Longrightarrow$ any point in the spacetime M has a neighborhood U_{i} that is isometric to Minkowski space $\left(V^{2,1}, \eta\right)$
- U_{i} can be extended globally and the geometry is trivial

Why 3d?

- $R_{a b c d}=0 \Longrightarrow$ any point in the spacetime M has a neighborhood U_{i} that is isometric to Minkowski space $\left(V^{2,1}, \eta\right)$
- U_{i} can be extended globally and the geometry is trivial
- But if M contains non-contractible curves, this extension is nontrivial

Why 3d?

Thus 3d gravity is relatively simple

Thus 3d gravity is relatively simple

Testing ground for the role of NCG in quantum gravity

Outline

```
Why 3d gravity?
Isometry groups of 3d gravity
Generalised Chern-Simons action for 3d gravity
Relating Chern-Simons action and Hopf algebras
Most general \(r\)-matrix for the general CS action
Semiduality and compatible \(r\)-matrices
Conclusion
```


Model spacetimes

Switching on the cosmological constant \wedge

Model spacetimes

Isometry groups of 3d gravity

Isometry groups of the local model spacetimes play a fundamental role in 3d gravity:

Isometry groups of 3d gravity

Isometry groups of the local model spacetimes play a fundamental role in 3d gravity:

- Construction of globally non-trivial solutions of the Einstein equations on a general 3-manifold;
- In the Chern-Simons formulation of 3d gravity, they play the role of gauge groups.

Isometry groups of 3d gravity at a glance

Λ	Euclidean sig. $\left(c^{2}<0\right)$	Lorentzian sig. $\left(c^{2}>0\right)$
$\Lambda=0$	$I S O(3)=S U(2) \bowtie \mathbb{R}^{3}$	$I S O(2,1)=S U(1,1) \ltimes \mathbb{R}^{3}$
$\Lambda>0$	$S O(4) \cong \frac{(S U(2) \times S U(2))}{\mathbb{Z}_{2}}$	$S O(3,1) \cong S L(2, \mathbb{C}) / \mathbb{Z}_{2}$
$\Lambda<0$	$S O(3,1) \cong \frac{S L(2, \mathbb{C})}{\mathbb{Z}_{2}}$	$S O(2,2) \cong \frac{(S L(2, \mathbb{R}) \times S L(2, \mathbb{R}))}{\mathbb{Z}_{2}}$

Lie algebras local isometry groups

The Lie algebras, denoted by \mathfrak{g}_{λ}, are the six-dimensional Lie algebra with generators J_{a} and $P_{a}, a=0,1,2$ with Lie brackets

$$
\left[J_{a}, J_{a}\right]=\varepsilon_{a b c} J^{c}, \quad\left[J_{a}, P_{b}\right]=\varepsilon_{a b c} P^{c} \quad\left[P_{a}, P_{b}\right]=\lambda \varepsilon_{a b c} J^{c} .
$$

where

$$
\lambda=-c^{2} \wedge .
$$

Outline

```
Why 3d gravity?
Isometry groups of 3d gravity
Generalised Chern-Simons action for 3d gravity
Relating Chern-Simons action and Hopf algebras
Most general r-matrix for the general CS action
Semiduality and compatible r-matrices
Conclusion
```


Generalised Chern-Simons action for 3d gravity

A CS theory on a $3 d$ manifold requires:

- a gauge group
- Ad-invariant, non-degenerate, symmetric bilinear form on the Lie algebra of the gauge group

Generalised Chern-Simons action for 3d gravity

Consider a 3d spacetime manifold M of topology $\mathbb{R} \times S$.

Generalised Chern-Simons action for 3d gravity

Consider a 3d spacetime manifold M of topology $\mathbb{R} \times S$.
The gauge field is locally a 1 -form $A \in \mathfrak{g}_{\lambda}$

$$
A=\omega_{a} J^{a}+e_{a} P^{a},
$$

where

- $\omega=\omega^{a} J_{a}$ is the spin connection on the frame bundle
- the 1 -form e_{a} is a dreibein (provided it is invertible).

Generalised Chern-Simons action for 3d gravity

The curvature of this connection is given by

$$
F=d A+\frac{1}{2}[A \wedge A]=R+C+T
$$

which contains

- the Riemann curvature

$$
R=d \omega+\frac{1}{2}[\omega \wedge \omega]
$$

- a cosmological term

$$
C=\frac{\lambda}{2} \epsilon^{a b c} e_{a} \wedge e_{b} J_{c}
$$

- the torsion

$$
T=\left(d e^{c}+\epsilon^{a b c} \omega_{a} \wedge e_{b}\right) P_{c} .
$$

Generalised Chern-Simons action for 3d gravity

The CS action for A is then defined by

$$
I_{\alpha \beta}(A)=\int_{M}(A \wedge d A)_{\alpha \beta}+\frac{1}{3}(A \wedge[A, A])_{\alpha \beta}
$$

where

Generalised Chern-Simons action for 3d gravity

The CS action for A is then defined by

$$
I_{\alpha \beta}(A)=\int_{M}(A \wedge d A)_{\alpha \beta}+\frac{1}{3}(A \wedge[A, A])_{\alpha \beta}
$$

where

$$
\begin{gathered}
\left(J_{a}, J_{b}\right)_{\alpha \beta}=\beta \eta_{a b},\left(J_{a}, P_{b}\right)_{\alpha \beta}=\alpha \eta_{a b},\left(P_{a}, P_{b}\right)_{\alpha \beta}=\lambda \beta \eta_{a b} . \\
\text { (E. Witten, C. Meusburger, B. J Schroers) }
\end{gathered}
$$

Generalised Chern-Simons action for 3d gravity

After integrating by parts and dropping the boundary term, the action becomes

$$
\begin{gathered}
I_{\tau}(A)=\alpha \int_{M}\left(2 e^{a} \wedge R_{a}+\frac{\lambda}{3} \epsilon_{a b c} e^{a} \wedge e^{b} \wedge e^{c}\right) \\
+\beta \int_{M}\left(\omega^{a} \wedge d \omega_{a}+\frac{1}{3} \epsilon_{a b c} \omega^{a} \wedge \omega^{b} \wedge \omega^{c}+\lambda e^{a} \wedge T_{a}\right)
\end{gathered}
$$

Generalised Chern-Simons action for 3d gravity

We identify

$$
\alpha=\frac{1}{16 \pi G}, \quad \beta=\text { Immirzi parameter }
$$

to see the explicit dependence of the CS action on \wedge, c, G and the Immirzi parameter.

Outline

```
Why 3d gravity?
Isometry groups of 3d gravity
Generalised Chern-Simons action for 3d gravity
Relating Chern-Simons action and Hopf algebras
```

```
Most general \(r\)-matrix for the general CS action
```

Most general r-matrix for the general CS action
Semiduality and compatible r-matrices
Conclusion

```

\section*{Classical \(r\)-matrices}

For any Lie algebra \(\mathfrak{g}\),
- let
\[
r=r^{a b} X_{a} \otimes Y_{b} \in \mathfrak{g} \otimes \mathfrak{g}
\]

\section*{Classical \(r\)-matrices}

For any Lie algebra \(\mathfrak{g}\),
- let
\[
r=r^{a b} X_{a} \otimes Y_{b} \in \mathfrak{g} \otimes \mathfrak{g}
\]
- Set
\[
\begin{aligned}
& r_{12}=r^{a b} X_{a} \otimes Y_{b} \otimes 1 \\
& r_{13}=r^{a b} X_{a} \otimes 1 \otimes Y_{b} \\
& r_{23}=r^{a b} 1 \otimes X_{a} \otimes Y_{b}
\end{aligned}
\]
in \(\mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g}\).

\section*{Classical \(r\)-matrices}

We define the classical Yang-Baxter map by
\[
\mathrm{CYB}: \mathfrak{g}^{\otimes 2} \rightarrow \mathfrak{g}^{\otimes 3}, \quad r \mapsto[[r, r]]=\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right] .
\]

\section*{Classical r-matrices}

We define the classical Yang-Baxter map by
\[
\text { CYB : } \mathfrak{g}^{\otimes 2} \rightarrow \mathfrak{g}^{\otimes 3}, \quad r \mapsto[[r, r]]=\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right] .
\]

The equation
\[
[[r, r]]=0
\]
is called the classical Yang-Baxter equation(CYBE).

\section*{Classical \(r\)-matrices}
- Any solution of the CYBE in \(\mathfrak{g} \otimes \mathfrak{g}\) is called a classical \(r\)-matrix.
- If
\[
[[r, r]] \neq 0
\]
but an invariant element of \(\mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g}\) then \(r\) is said to satisfy the modified classical Yang-Baxter equation(MCYBE).

\section*{Relating Chern-Simons action and Hopf algebras}
- Classical \(r\)-matrices provide bridge between a Chern-Simons theory and Hopf algebras.

\section*{Relating Chern-Simons action and Hopf algebras}

\author{
MAIN THEOREM:
}

\section*{Relating Chern-Simons action and Hopf algebras}

\section*{MAIN THEOREM:}

A classical \(r\)-matrix is said to be compatible with a CS action if:

\section*{Relating Chern-Simons action and Hopf algebras}

\section*{MAIN THEOREM:}

A classical \(r\)-matrix is said to be compatible with a CS action if:
- it satisfies the CYBE
- its symmetric part is equal to the Casimir associated to the Ad-invariant, non-degenerate, symmetric bilinear form used in the CS action.

\author{
(V. V. Fock, A. A Rosly )
}

\section*{Relating Chern-Simons action and Hopf algebras}

The Casimir associated \((\cdot, \cdot)_{\alpha \beta}\)
\[
K_{\alpha \beta}=\frac{1}{\alpha^{2}-\lambda \beta^{2}}\left(\alpha\left(P_{a} \otimes J^{a}+J^{a} \otimes P_{a}\right)-\beta\left(P_{a} \otimes P^{a}+\lambda J_{a} \otimes J^{a}\right) .\right.
\]

\section*{Quantum picture}
- Poisson brackets of the extended phase space is given in terms the classical \(r\)-matrix.
- The quantisation of such classical systems implies quantum systems whose symmetries are given by Hopf algebras.

\section*{Quantum picture}

Resulting quantum picture:

\section*{Quantum picture}

Resulting quantum picture:
- a deformation of the model spacetimes into non-commutative spaces
- a replacement of the local isometry groups with 'quantum isometry groups' (QIGs)

Quantum isometry groups in \(3 d\) quantum gravity
\begin{tabular}{|c|c|c|}
\hline\(\wedge\) & Euclidean \(\left(c^{2}<0\right)\) & Lorentzian \(\left(c^{2}>0\right)\) \\
\hline\(\Lambda=0\) & \(D(U(\mathfrak{s u}(2)))\) & \(D(U(\mathfrak{s u}(1,1)))\) \\
\hline\(\Lambda>0\) & \(D\left(U_{q}(\mathfrak{s u}(2))\right)\), q root of unity & \(D\left(U_{q}(\mathfrak{s u}(1,1))\right) q \in \mathbb{R}\) \\
\hline\(\Lambda<0\) & \(D\left(U_{q}(\mathfrak{s u}(2))\right), q \in \mathbb{R}\) & \(D\left(U_{q}(\mathfrak{s l}(2, \mathbb{R}))\right), q \in U(1)\) \\
\hline
\end{tabular}
\[
q=e^{-\frac{\hbar G \sqrt{\Lambda}}{c}}
\]

\section*{Relating Chern-Simons action and Hopf algebras}

Uniqueness of associated \(r\)-matrices ???

\section*{Relating Chern-Simons action and Hopf algebras}

Associated quantum groups include a family of

\section*{Relating Chern-Simons action and Hopf algebras}

Associated quantum groups include a family of
- bicrossproduct quantum groups
- quantum doubles.
(B. Schroers, S Majid, C Meusburger)

\section*{Relating Chern-Simons action and Hopf algebras}

Associated quantum groups include a family of
- bicrossproduct quantum groups
- quantum doubles.
(B. Schroers , S Majid, C Meusburger)
- ????????

\section*{Outline}

\section*{Why 3d gravity? \\ Isometry groups of 3d gravity \\ Generalised Chern-Simons action for 3d gravity \\ Relating Chern-Simons action and Hopf algebras \\ Most general \(r\)-matrix for the general CS action}

Semiduality and compatible \(r\)-matrices

Conclusion

\section*{Most general \(r\)-matrix for the general CS action}

The trick of generalised complexification
\[
\begin{aligned}
r & =(\mathrm{id} \otimes A+\theta \otimes B-B \otimes \theta+\theta \otimes \theta C) J^{a} \otimes J_{a} \\
& =J^{a} \otimes A\left(J_{a}\right)+P^{a} \otimes B\left(J_{a}\right)-B\left(J_{a}\right) \otimes P^{a}+P^{a} \otimes C\left(P_{a}\right) \\
& =A_{b a} J^{a} \otimes J^{b}+B_{b a} P^{a} \otimes J^{b}-B_{b a} J^{b} \otimes P^{a}+C_{b a} P^{a} \otimes P^{b},
\end{aligned}
\]
where
\[
P_{a}=\theta J_{a}, \quad \theta^{2}=-\lambda
\]
and
\[
A_{a b}=-A_{b a} \quad C_{a b}=-C_{b a}
\]

\section*{Most general \(r\)-matrix for the general CS action}

We are trying to solve
\[
[[r, r]]=\Omega
\]
where \(\Omega\) is the most general invariant element in \(\left(\mathfrak{g}_{\lambda}\right)^{3}\); in terms of real parameters \(\tilde{\alpha}, \tilde{\beta}\) :
\[
\begin{aligned}
\Omega & =\tilde{\alpha} \epsilon_{a b c}\left(\lambda J^{a} \otimes J^{b} \otimes J^{c}+J^{a} \otimes P^{b} \otimes P^{c}\right. \\
& \left.+P^{a} \otimes J^{b} \otimes P^{c}+P^{a} \otimes P^{b} \otimes J^{c}\right) \\
& +\tilde{\beta} \epsilon_{a b c}\left(P^{a} \otimes P^{b} \otimes P^{c}+\lambda P^{a} \otimes J^{b} \otimes J^{c}\right. \\
& \left.+\lambda J^{a} \otimes J^{b} \otimes P^{c}+\lambda J^{a} \otimes P^{b} \otimes J^{c}\right)
\end{aligned}
\]

\section*{Most general \(r\)-matrix for the general CS action}

Or
\[
\begin{aligned}
\Omega & =(\tilde{\alpha}(\lambda+\mathrm{id} \otimes \theta \otimes \theta+\theta \otimes \mathrm{id} \otimes \theta+\theta \otimes \theta \otimes \mathrm{id}) \\
& +\tilde{\beta}(\theta \otimes \theta \otimes \theta+\lambda \theta \otimes \mathrm{id} \otimes \mathrm{id} \\
& +\lambda \mathrm{id} \otimes \mathrm{id} \otimes \theta+\lambda \mathrm{id} \otimes \theta \otimes \mathrm{id})) \epsilon_{a b c} J^{a} \otimes J^{b} \otimes J^{c}
\end{aligned}
\]

\section*{Conditions on possible solutions}
\[
\begin{array}{r}
\frac{1}{2}\left(A^{2}\right)+\frac{\lambda}{2}\left((B)^{2}-\left(B^{2}\right)\right)=-\tilde{\alpha} \lambda, \\
(C B)=-\tilde{\beta}, \\
(B-(B))\left(B+B^{t}\right)+\frac{1}{2}\left((B)^{2}-\left(B^{2}\right)\right) \mathrm{id}-C A \\
+\lambda\left(C^{2}-\frac{1}{2}\left(C^{2}\right) \mathrm{id}\right)=\tilde{\alpha} \mathrm{id}, \\
-A\left(B+B^{t}\right)-\left(B^{t}-(B)\right) A-(A B) \mathrm{id} \\
+\lambda\left(B^{t} C-(B) C\right)=\lambda \tilde{\beta} \mathrm{id}
\end{array}
\]

\section*{Outline}
```

Why 3d gravity?
Isometry groups of 3d gravity
Generalised Chern-Simons action for 3d gravity
Relating Chern-Simons action and Hopf algebras
Most general r-matrix for the general CS action

```

Semiduality and compatible \(r\)-matrices

Conclusion

\section*{Semiduality and compatible \(r\)-matrices}
- A given classical action may have several QIGs associated to it

\section*{Semiduality and compatible \(r\)-matrices}
- A given classical action may have several QIGs associated to it
- a given QIG may arise for more than one action.

\section*{Semiduality and compatible \(r\)-matrices}
- A given classical action may have several QIGs associated to it
- a given QIG may arise for more than one action.
- Moreover, pairs of QIGs may be related by semiduality.

\section*{Semiduality and compatible \(r\)-matrices}

Given
\[
K_{\alpha}=16 \pi G\left(J_{a} \otimes P^{a}+P_{a} \otimes J^{a}\right)
\]

\section*{Semiduality and compatible \(r\)-matrices}

\section*{Given}
\[
K_{\alpha}=16 \pi G\left(J_{a} \otimes P^{a}+P_{a} \otimes J^{a}\right)
\]
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Cos \\
const \\
\(\lambda=-c^{2} \wedge\)
\end{tabular} & Sig & \(r\) & QIG & \begin{tabular}{c} 
Semidual of \\
QIG
\end{tabular} \\
\hline\(\lambda=0\) & E & \(r_{D_{0}}\) & \(U(\mathfrak{s o}(4))\) & \(D(U(\mathfrak{s u}(2)))\) \\
\hline\(\lambda=0\) & L & \begin{tabular}{c}
\(r_{D_{0}}\) \\
\(r_{B_{0}}\)
\end{tabular} & \(U(\mathfrak{s o}(2,2))\) & \begin{tabular}{c}
\(D(U(\mathfrak{s l}(2, \mathbb{R})))\) \\
\(\mathbb{C}[A N(2)] \bowtie_{s} U(\mathfrak{s l}(2, \mathbb{R}))\)
\end{tabular} \\
\hline
\end{tabular}
\[
\begin{gathered}
r_{D_{0}}^{a s}=\frac{1}{2}\left(P_{a} \otimes J^{a}-J^{a} \otimes P_{a}\right) \\
r_{B_{0}}^{a s}=\frac{1}{2} \epsilon_{a b c} m^{a}\left(P^{b} \otimes J^{c}+J^{b} \otimes P^{c}\right), \mathbf{m}^{2}=-1
\end{gathered}
\]

\section*{Outline}
```

Why 3d gravity?
Isometry groups of 3d gravity
Generalised Chern-Simons action for 3d gravity
Relating Chern-Simons action and Hopf algebras
Most general r-matrix for the general CS action
Semiduality and compatible r-matrices

```

Conclusion

\section*{Conclusion}
- Semidualisation provides a way of classifying quantisation ambiguities in 3d gravity

THANK YOU!!!```

