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Abstract

In quantum mechanics a state of a system is described by a
complex valued function on configuration space. Consequently
the Hilbert space assigned to a system composed of two parts
is the tensor product of Hilbert spaces assigned to each part.
The same holds for the algebra of observables: the C∗-algebra
corresponding to a composed system is the tensor product of
C∗-algebras corresponding to subsystems. This structure is
well compatible with the action of classical groups.

This is not the case for quantum groups. If a global symmetry
is described by a quantum group then we are forced to deform
the concept tensor product replacing it by a more
sophisticated concept of monoidal structure.
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Abstract - cont.

The aim of the talk is
to introduce the concept of monoidal structure on the
category of C∗-algebras subject to an action of a fixed
quantum group,
to formulate natural conditions the good monoidal
structure should obey and
to discuss the existence and uniqueness of good monoidal
structure.
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Notation

Let X and Y be a norm closed subsets of a C∗ algebra. We set

XY =

{
xy :

x ∈ X
y ∈ Y

}CLS

,

where CLS stands for norm Closed Linear Span.
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Category of C∗ algebras

Let C∗ be a category whose objects are separable C∗ algebras.
If X ,Y ∈ C∗ then by definition Mor(X ,Y ) is the set of all
∗-algebra homomorphisms ϕ acting from X into M(Y ) such
that ϕ(X )Y = Y .

Any ϕ ∈ Mor(X ,Y ) admits a unique extension to a unital
∗-algebra homomorphism acting from M(X ) into M(Y ).
Composition of morphisms is defined as composition of their
extensions.

In what follows
ϕ : X −→ Y

means that ϕ ∈ Mor(X ,Y ). It does not imply that ϕ(X ) ⊂ Y .
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The concept of Crossed Product Algebra

Let X ,Y ,Z be C∗-algebras, α ∈Mor(X ,Z ) and
β ∈Mor(Y ,Z ).
We say that Z is a crossed product of X and Y if

α(X )β(Y ) = Z .

Example:
Z = X ⊗ Y

α(x) = x ⊗ IY
β(y) = IX ⊗y

In this presentation for any C∗-algebras X and Y ,
X ⊗ Y always denote the minimal (spatial) tensor product.
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Crossed Product Algebra in practice

Let X ,Y be separable C∗ algebras, H be a Hilbert space,
α ∈ Rep(X ,H) and β ∈ Rep(Y ,H). Then

α(X )β(Y ) = β(Y )α(X )

if and only if
α(X )β(Y ) is a C∗ algebra.

Moreover in this case α ∈ Mor(X ,Z ) and β ∈ Mor(Y ,Z ),
where Z = α(X )β(Y ). Therefore Z is a crossed product of X
and Y .
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Locally compact quantum groups
Let G be a locally compact quantum group. This is a locally
compact quantum space G endowed with a continuous
associative mapping G × G −→ G (group rule) subject to
certain axioms.

In practice we work with the C∗-algebra A = C∞(G ) endowed
with a morphism ∆ ∈ Mor(A,A⊗ A) corresponding to the
group rule on G . Shorthand notation:

G = (A,∆).

Strictly speaking one has to distinguish locally compact quan-
tum group G from the corresponding Hopf C∗-algebra (A,∆).{

actions
of G

}
=

{
coactions
of (A,∆)

}
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Locally compact quantum groups

The present work does not use the full power of the
Kustermans and Vaes theory of locally compact quantum
groups. Instead we use the theory of manageable
multiplicative unitaries. For us locally compact quantum
groups are objects coming from multiplicative unitary
operators. In particular we do not use the Haar weights.
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Duality

Locally compact quantum groups appear in dual pairs:

G = (A,∆)

Ĝ = (Â, ∆̂)

The duality is described by a bicharacter V . This is a unitary
element of M(Â⊗ A) such that

(id⊗∆)V = V12V13,

(∆̂⊗ id)V = V23V13.
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Quasitriangular quantum groups

Let R be a unitary element of M(Â⊗ Â). We say that R is an
universal R-matrix if

(id⊗∆̂)R = R12R13,

(∆̂⊗ id)R = R23R13,

R12V13V23 = V23V13R12.

 (1)

Definition 1
A locally compact quantum group G = (A,∆) is called
quasitriangular if there exists a unitary universal R-matrix in
M(Â⊗ Â).
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C∗-algebras subject to an action of G

Let X be a C∗-algebra and ρ ∈ Mor(X ,X ⊗ A). We say that ρ
is an action of G on X if

1. X
ρ //

ρ

��

X ⊗ A
ρ⊗id
��

X ⊗ A
id⊗∆

// X ⊗ A⊗ A

(2)

is a commutative daigram.
2. ker ρ = {0},
3. ρ(X )(I⊗A) = X ⊗ A (Podleś condition).

Remark (
Podleś

condition

)
=⇒

(
ρ ∈ Mor(X ,X ⊗ A)

)
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Morphisms, functors and natural mappings

We shall use the language of the theory of categories. Notions
of object, morphism, functor and natural mapping will appear.
We work mainly with category C∗G introduced in the next slide.
The class of objects of the category will be denoted by the
same symbol C∗G and the set of morphisms acting from X into
Y (X ,Y ∈ C∗G ) will be denoted by MorG (X ,Y ).

Functor from to
Proj1
Proj2
⊗
�

C∗G × C∗G C∗G

⊗A C∗G C∗G

Natural
mapping from to

α Proj1 �

β Proj2 �

ρ idC∗G
⊗A
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Category C∗G

Objects are C∗-algebras with actions of G . For any X ∈ C∗G ,
the action of G on X will be denoted by ρX . Morphisms in C∗G
are C∗-morphisms intertwining the actions of G :

Let X ,Y be C∗-algebras with actions of G . We say that a
morphism γ ∈ Mor(X ,Y ) intertwins the actions of G if

X
ρX

//

γ

��

X ⊗ A

γ⊗id
��

Y
ρY

// Y ⊗ A

is a commutative diagram.

The set of all such morphisms will be denoted by MorG (X ,Y ).
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Examples

Any C∗-algebra X with the trivial action
ρX (x) = x ⊗ IA ∈ M(X ⊗ A)

is an object of C∗G .

The field of complex numbers C is a C∗-algebra. This is the
initial object of category C∗: For any C∗-algebra X the
mapping

1X : C 3 λ 7−→ λ IX ∈ M(X )

is the only element of Mor(C,X ). Let ρC = 1C⊗A. Clearly ρC

is a trivial action of G on C and C ∈ C∗G .

For any X ∈ C∗G we have:

IX ∈ M(X ), idX ∈ MorG (X ,X ), 1X ∈ MorG (C,X ).
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A = C∞(G ) with the action
ρA(a) = ∆(a) ∈ M(A⊗ A)

is an object of C∗G . This is a distinguished object.

Let X be a C∗-algebra with any action of G . Then X ⊗ A with
the action

ρX⊗A(x ⊗ a) = x ⊗∆(a) ∈ M((X ⊗ A)⊗ A)

is an object of C∗G . The reader should notice that the action of
G on X ⊗ A is induced by the action of G on A. The action
ρX is ignored. However the commutative diagram (2) shows
that ρX intertwines the actions of G on X and X ⊗ A:

ρX ∈ MorG (X ,X ⊗ A).
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One may consider two functors: idC∗G and ⊗A (tensoring
objects by A and morphisms by idA) acting within the category
C∗G . Then ρ become a natural mapping from idC∗G into ⊗A

Let X ,Y ∈ C∗G . Then X ⊗ Y with the action
ρX⊗Y (x ⊗ y) = x ⊗ ρY (y) ∈ M((X ⊗ Y )⊗ A)

is an object of C∗G . Again the action ρX is ignored: the action
of G on X ⊗ Y is induced by the action of G on Y . With the
standard tensor product of morphisms, ⊗ becomes a
associative covariant functor acting from C∗G × C∗G into C∗G .
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Main topic
We are interested in monoidal structures on the category C∗G .
By definition a monoidal structure on C∗G is an associative
covariant functor � acting from C∗G × C∗G into C∗G having C as
neutral object:

X � C = X = C � X ,
X ′ � C = X ′ = C � X ′,
ϕ � idC = ϕ = idC � ϕ

for any X ,X ′ ∈ C∗G and ϕ ∈ Mor(X ,X ′).

Main result
Category C∗G admits a monoidal structure (with certain natural
properties) if and only if G is quasi-triangular. More than that:
monoidal structures are in one to one correspondence with
unitary universal R-matrices.
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Remark: ⊗ is not monoidal

In general (when G is non-trivial i.e: is not a one-element
group) the associative functor ⊗ does not define a monoidal
structure on C∗G . This is because C is not a neutral object for
⊗. Indeed, for any X ∈ C∗G we have:

C⊗ X = X
X ⊗ C = Xtr ,

where Xtr is the C∗-algebra X equipped with the trivial action
of G . If G is not trivial then Atr 6= A.
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Natural mappings α and β

Let � be a monoidal structure on C∗G . For any X ,Y ∈ C∗G we
set

αXY = idX � 1Y ,

βXY = 1X � idY .

Then
αXY ∈ MorG (X ,X � Y ),
βXY ∈ MorG (Y ,X � Y ).

In particular αXC ∈ Mor(X ,X ) and βCY ∈ Mor(Y ,Y ). Clearly

αXC = idX ,
βCY = idY .
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One can easily verify that for any X ,X ′,Y ,Y ′ ∈ C∗G ,
ϕ ∈ MorG (X ,X ′) and ψ ∈ MorG (Y ,Y ′) the diagram

X αXY
//

ϕ
��

X � Y

ϕ�ψ
��

Y

ψ
��

βXY
oo

X ′
αX ′Y ′

// X ′ � Y ′ Y ′
βX ′Y ′

oo

(3)

is commutative. It shows that α and β are natural mappings
from Proj1 and Proj2 into �.
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Monoidal structure on C∗G

Let G = (A,∆) be a quasitriangular locally compact quantum
group. In a forthcoming paper [R. Meyer, S. Roy and SLW] we
introduced a monoidal structure � on the category C∗G . It has
the following properties:

Property 1
For any X ,Y ∈ C∗G , X � Y is a crossed product of X and Y :

X � Y = αXY (X )βXY (Y )

Property 2
The �-product of injective morphisms is injective.
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Property 3
� reduces to ⊗, when the action of G on one of the involved
C∗-algebras is trivial. More precisely: If X ,Y ∈ C∗G and if one
of the actions ρX and ρY is trivial then X � Y = X ⊗ Y as
C∗-algebras. Moreover

If ρX is trivial then

ρX�Y (x⊗y) = x1ρ
Y (y)23

If ρY is trivial then

ρX�Y (x⊗y) = ρX (x)13y2

Similarly for morphisms:
If ϕ ∈ MorG (X ,X ′), ψ ∈ MorG (Y ,Y ′) and if the actions ρX

and ρX ′ are trivial then

ϕ� ψ = ϕ⊗ ψ.

The last formula holds also under assumption of triviality of
ρY and ρY ′ .

S.L. Woronowicz Quantum symmetries and composed systems



From R-matrix to monoidal structure

The category C∗G contains a distinguished object A with
ρA = ∆. Let V ∈ M(Â⊗ A) be the bicharacter describing the
duality between Ĝ and G . To make our formulae simpler we
shall use the following shorthand notation:

V1α =
[(
id⊗αAA

)
V
]
13 ,

V2β =
[(
id⊗βAA

)
V
]
23 .

Clearly V1α,V2β ∈ M(Â⊗ Â⊗ (A � A)). With this notation
we have:
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Theorem 2 (R. Meyer, S. Roy and SLW)

Let G = (A,∆) be a quasitriangular locally compact quantum
group with an universal unitary R-matrix R ∈ M(Â⊗ Â).
Then there exists a monoidal structure � on C∗G having
Properties 1,2 and 3 and such that

V1αV2β = V2βV1αR12.
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From monoidal structure to R-matrix

We have the following:

Theorem 3

Let G = (A,∆) be a locally compact quantum group and �
be a monoidal structure on C∗G having Properties 1,2 and 3.
Then there exists (unique) universal unitary R-matrix
R ∈ M(Â⊗ Â) such that

V1αV2β = V2βV1αR12.
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Plan of the proof of Thm 3

Let
R̃ = V ∗1αV

∗
2βV1αV2β.

Then R̃ ∈ M(Â⊗ Â⊗ (A � A)). To prove Thm 3 we have to
show that the (A � A) - leg of R̃ is trivial. In other words we
have to show that R̃ = R12, where R ∈ M(Â⊗ Â). Next we
have to prove that R satisfies the relations (1) characteristic
for unitary R-matrix. The latter is a matter of easy computa-
tions.

The proof is based on the following two propositions:
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Let X ∈ C∗G and x ∈ M(X ). We say that x is G -invariant if
ρX (x) = x ⊗ IA.

Proposition 4

Let X ,Y ∈ C∗G , x ∈ M(X ) and y ∈ M(Y ). Assume that one
of the elements x, y is G-invariant. Then

αXY (x)βXY (y) = βXY (y)αXY (x).
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Proposition 5

Let X ,Y ,Z ,T ∈ C∗G and u ∈ M(X � Z ) and v ∈ M(Y � T ).
Assume that

(idX � 1Y � idZ � 1T ) (u) = (1X � idY � 1Z � idT ) (v).

Then u = λ IX�Z and v = λ IY�T , where λ ∈ C.
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Notation
We shall deal with the �-products of two and four copies of
the distinguished object A:

A�2 = A � A
A�4 = A�2 �A�2

To make our formulae shorter we shall write α and β instead
of αAA and βAA and α̃ and β̃ instead of αA�2A�2 and βA�2A�2 .
Then

α, β ∈ MorG ( A ,A�2),

α̃, β̃ ∈ MorG (A�2,A�4).

Composing these morphisms we obtain four morphisms from A
into A�4. Using the formulae expressing α and β as �-pro-
ducts of idA and 1A one can easily verify that

(α� α)α = α̃α, (β � β)α= α̃β,

(α� α)β = β̃α, (β � β)β = β̃β.
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The following eight unitaries belonging to M(Â⊗ Â⊗ A�4)
will be involved in our computations: For i ∈ {1, 2} and
r , s ∈ {α, β} we set:

Vi ,̃rs =
{

(idÂ⊗r̃ ◦ s)V
}

i3
.

With this notation(
idÂ⊗ idÂ⊗(α� α)

)
R̃ = V ∗1,α̃αV

∗
2,β̃α

V1,α̃αV2,β̃α,(
idÂ⊗ idÂ⊗(β � β)

)
R̃ = V ∗1,α̃βV

∗
2,β̃β

V1,α̃βV2,β̃β.
(4)
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G invariance of V1αV ∗1β

We compute:(
idÂ⊗ρA�A

)
V1α =

(
idÂ⊗α⊗ idA

)
(idÂ⊗ρA)V

=
(
idÂ⊗α⊗ idA

)
V12V13 = V1αV13.

Similarly (
idÂ⊗ρ

A�A)V1β = V1βV13.

Therefore (
idÂ⊗ρ

A�A) (V1αV ∗1β
)

= V1αV ∗1β ⊗ IA .

It shows that the ‘second leg’ of V1αV ∗1β is G -invariant.
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The main steps of the proof

Proposition 4 shows now that V2,β̃αV
∗
2,β̃β

commutes with V1,α̃β

and that V1,α̃αV ∗1,α̃β commutes with V2,β̃α. Using this informa-
tion one can easily show that the unitaries appearing on the
right hand side of relations (4) are equal. Therefore(

idÂ⊗ idÂ⊗(α� α)
)
R̃ =

(
idÂ⊗ idÂ⊗(β � β)

)
R̃ .

Notice that

α� α = idA � 1A � idA � 1A,
β � β = 1A � idA � 1A � idA .

Proposition 5 shows now that the ‘last leg’ of R̃ is trivial:
R̃ = R12, where R ∈ M(Â⊗ Â). To end the proof we have to
show that R satisfies (1).
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R is a unitary R-matrix
We already know that

V1αV2β = V2βV1αR12, (5)

where R is a unitary element of M(Â⊗ Â). Applying ∆̂ to the
first and second leg we get:

V2αV1αV3β = V3βV2αV1α

{
(∆̂⊗ idÂ)R

}
123
,

V1αV3βV2β = V3βV2βV1α

{
(idÂ⊗∆̂)R

}
123
.

On the other hand we have:

V2αV1αV3β = V2αV3βV1αR13

= V3βV2αR23V1αR13 = V3βV2αV1αR23R13,
V1αV3βV2β = V3βV1αR13V2β

= V3βV1αV2βR13 = V3βV2βV1αR12R13
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It shows that
(∆̂⊗ idÂ)R = R23R13,

(idÂ⊗∆̂)R = R12R13.

To prove the third relation of (1) we apply idÂ⊗ idÂ⊗ρA�A to
the both sides of (5):{

(idÂ⊗ρA)V
}

1α3

{
(idÂ⊗ρA)V

}
2β3

=
{

(idÂ⊗ρA)V
}

2β3

{
(idÂ⊗ρA)V

}
1α3 R12,

V1αV13V2βV23 = V2βV23V1αV13R12,

V1αV2βV13V23 = V2βV1αV23V13R12,

R12V13V23 = V23V13R12,

�
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Comparing monoidal structures

Let �,�′ be monoidal structures on C∗G and Φ : � −→ �′ be
a natural mapping. It means that for any pair of objects
X ,Y ∈ C∗G we have morphism ΦXY ∈ MorG (X � Y ,X �′ Y )
and that for any pair of morphisms r ∈ MorG (X ,Z ) and
s ∈ MorG (Y ,T ) the diagram

X � Y r�s //

ΦXY

��

Z � T

ΦZT

��
X �′ Y

r�′s
// Z �′ T

(6)

is commutative. We know that C�X = C�′ X = X = X �C
= X �′ C. Therefore ΦXC,ΦCX ∈ MorG (X ,X ). We say that Φ
is normalized if ΦXC = idX = ΦCX for any X ∈ C∗G .
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Uniqueness of monoidal structure

Theorem 6

Let � and �′ be monoidal structures on C∗G corresponding to
the same R-matrix. Then there exists one and only one
normalized natural mapping Φ : � −→ �′. The morphism

ΦXY ∈ MorG (X � Y ,X �′ Y )

is an isomorphism.
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